Math 546/701I—Exam II

Instructor: Shaoyun Yi

Name: _

- (1) [15 points] True/False questions: Determine if each of the following is true or false. In each case, explain your answer in detail or give one counterexample if it is false.
 - (a) True or False: $4\mathbf{Z} \cong 8\mathbf{Z}$. True. Both are infinite and cyclic.
 - (b) True or False: Let σ be any permutation in S_n . Then σ^2 must be in A_n . True. σ^2 can be always written as a product of an even number of transpositions.
 - (c) True or False: Let p be a prime number. Then $\mathbf{Z}_p \times \mathbf{Z}_p \cong \mathbf{Z}_{p^2}$. False. \mathbf{Z}_{p^2} is cyclic but $\mathbf{Z}_p \times \mathbf{Z}_p$ is not.
 - (d) True or False: Every subgroup of a non-cyclic group is non-cyclic. False. For example, $S_3, \mathbb{Z}_2 \times \mathbb{Z}_2$.
 - (e) True or False: Two finite groups are isomorphic if they have the same order. False. For example, $\mathbf{Z}_2 \times \mathbf{Z}_4$, $\mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$.

(2) **[12 points]** Let $G = \{x \in \mathbf{R} \mid x > 0 \text{ and } x \neq 1\}$, and define * on G by $a * b = a^{\ln b}$ for all $a, b \in G$.

In Homework 2 (4), we have already shown that (G, *) is an abelian group and the identity element is the natural number e.

Prove that (G, *) is isomorphic to the group \mathbf{R}^{\times} under the standard multiplication.

Define a function $\phi : \mathbf{R}^{\times} \to G$ by $\phi(y) = e^y$ for all $y \in \mathbf{R}^{\times}$. It is well-defined.

 $\phi(y) = e^y > 0$ and $e^y \neq 1$ since $y \in \mathbf{R}^{\times}$. That is, $\phi(y) \in G$ for all $y \in \mathbf{R}^{\times}$.

Moreover, we define $\phi^{-1}: G \to \mathbf{R}^{\times}$ by $\phi^{-1}(x) = \ln x$ for all $x \in G$. \checkmark To show that ϕ is one-to-one and onto, we need to verify that ϕ^{-1} is the inverse function of ϕ . In fact, for all $x \in G$ and all $y \in \mathbf{R}^{\times}$, we have

 $\phi(\phi^{-1}(x)) = \phi(\ln x) = e^{\ln x} = x$ and $\phi^{-1}(\phi(y)) = \phi^{-1}(e^y) = \ln(e^y) = y$. For any two elements $y_1, y_2 \in \mathbf{R}^{\times}$, we have

$$\phi(y_1 \cdot y_2) = e^{y_1 \cdot y_2} = (e^{y_1})^{y_2} = (e^{y_1})^{\ln(e^{y_2})} = e^{y_1} * e^{y_2} = \phi(y_1) * \phi(y_2).$$

This shows that ϕ respects the two operations. Thus, ϕ is an isomorphism.

(3) (a) [6 points] Let G be a group and let $g \in G$ be an element of order 100. List all possible powers of g that have order 5. (Hint: Consider the cyclic subgroup $\langle g \rangle$ generated by g.)

For any integer k, we have $\langle g^k \rangle = \langle g^d \rangle$ with $d = \gcd(k, 100)$. And $o(g^k) = |\langle g^k \rangle| = |\langle g^d \rangle| = \frac{100}{d} = \frac{100}{\gcd(k, 100)} = 5$. So, $\gcd(k, 100) = 20$. It is equivalent to $\gcd\left(\frac{k}{20}, 5\right) = 1 \quad \Rightarrow \frac{k}{20} = 1, 2, 3, 4 \quad \Rightarrow k = 20, 40, 60, 80.$

(b) [6 pts] Let $G = \mathbb{Z}_{100}$. List all possible choice of $[k]_{100}$ such that $\langle [k]_{100} \rangle = \langle [15]_{100} \rangle$. $\langle [k]_{100} \rangle = \langle [15]_{100} \rangle = \langle [5]_{100} \rangle$ since $\gcd(15, 100) = 5$. It follows that $\langle [k]_{100} \rangle = \langle [5]_{100} \rangle \iff \gcd(k, 100) = 5 \iff \gcd\left(\frac{k}{5}, 20\right) = 1$. Thus, $\frac{k}{5} = 1, 3, 7, 9, 11, 13, 17, 19$. In conclusion, the possible choices are

k = 5, 15, 35, 45, 55, 65, 85, 95.

(c) [6 points] Give the subgroup diagram of \mathbf{Z}_{100} . $100 = 2^2 5^2$: Any divisor $d = 2^i 5^j$, where i = 0, 1, 2 and j = 0, 1, 2.

- (4) **[15 points]** Recall that $D_n = \{a^k, a^k b \mid 0 \le k < n\}$, where $a^n = e, b^2 = e$, and $ba = a^{-1}b$. Moreover, in Homework 7 (3), we have already shown that $ba^m = a^{-m}b$ for all $m \in \mathbb{Z}$.
 - (a) [3 points] Show that $(a^k b)^2 = e$ for each $0 \le k < n$.

 $(a^kb)^2 = (a^kb)(a^kb) = a^k(ba^k)b = a^k(a^{-k}b)b = (a^ka^{-k})(bb) = ee = e.$

(b) [8 points] Find the order of each element of D_{10} . (Hint:Use part (a).)

First, we know that
$$o(a^k) = \frac{10}{\gcd(k, 10)}$$
. Thus,
$$\frac{a^k | e | a | a^2 | a^3 | a^4 | a^5 | a^6 | a^7 | a^8 | a^9}{\text{order} | 1 | 10 | 5 | 10 | 5 | 2 | 5 | 10 | 5 | 10}$$

It follows from Part (a) that all the remaining elements of the form $a^k b$ have the order 2 since $a^k b \neq e$. That is,

$a^k b$	b	ab	a^2b	a^3b	a^4b	a^5b	a^6b	a^7b	a^8b	a^9b
order	2	2	2	2	2	2	2	2	2	2

- (c) [4 points] Is D_{10} isomorphic to $\mathbf{Z}_4 \times \mathbf{Z}_5$? Show work to support your answer.
- No. $\mathbf{Z}_4 \times \mathbf{Z}_5$ is cyclic but D_{10} is not. Or there is an element of order 4 in $\mathbf{Z}_4 \times \mathbf{Z}_5$ but D_{10} has none.