Exam II Review

Shaoyun Yi

MATH 546/701I

University of South Carolina

Spring 2022

Review

- A group isomorphism $\phi : (G_1, *) \to (G_2, \cdot)$
 - Find/Verify $\phi\colon$ well-defined; 1-to-1 & onto; respects two operations
 - $\phi(a^n) = (\phi(a))^n$ for all $a \in G_1, n \in \mathbb{Z}$. e.g., n = 0 & n = -1
 - $o(a) = n \rightsquigarrow o(\phi(a)) = n$ & abelian (cyclic) \rightsquigarrow abelian (cyclic)
- Lagrange's Theorem If $|G| = n < \infty$ and $H \subseteq G$, then |H||n.
 - The converse is false: e.g., No subgroup of order 6 in A_4
 - $|\langle a \rangle| = o(a) | n$ for any $a \in G$.
 - Any group of prime order is cyclic (\rightsquigarrow abelian).
- Cayley's Theorem Every group is isomorphic to a permutation group.
 - Cyclic group: Infinite: ≅ Z & Finite: ≅ Z_n → multiplicative G subgroups of Z & subgroups of Z_n → subgroup diagram G finite abelian with exponent N = max{o(a)} → G cyclic ⇔ N = |G| Z_n[×] is not always cyclic.
 - Dihedral group $D_n, |D_n| = 2n$
 - Alternating group $A_n, |A_n| = n!/2$
- Product of two subgroups is not always a subgroup.

If $h^{-1}kh \in K$ for all $h \in H, k \in K$, then HK is a subgroup. $\rightsquigarrow G$ abelian \bigcirc

• Direct product of (two $\rightsquigarrow n$) groups: e.g., $\mathbf{Z}_n \cong \mathbf{Z}_{p_1^{\alpha_1}} \times \cdots \times \mathbf{Z}_{p_m^{\alpha_m}} \rightsquigarrow \varphi(n)$ The order of an element is the **Icm** of the orders of each component.

Shaoyun <u>Yi</u>

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group $G_2 = \{ \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} : m \neq 0 \}$ under matrix multiplication.

Define $\phi : G_1 \to G_2$ by $\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$. To show ϕ is an isomorphism: well-defined: For $f_{m,b} \in G_1$, we have $\phi(f_{m,b}) \in G_2$ since $m \neq 0$.

For any $f_{m_1,b_1}, f_{m_2,b_2} \in G_1$, to show $\phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1,b_1})\phi(f_{m_2,b_2})$: For any $x \in \mathbf{R}$, we have $f_{m_1,b_1} \circ f_{m_2,b_2}(x) = \cdots = m_1 m_2 x + (m_1 b_2 + b_1)$. $\Rightarrow \phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1 m_2,m_1 b_2 + b_1}) = \begin{bmatrix} m_1 m_2 & m_1 b_2 + b_1 \\ 0 & 1 \end{bmatrix}$; Also $\phi(f_{m_1,b_1})\phi(f_{m_2,b_2}) = \begin{bmatrix} m_1 & b_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} m_2 & b_2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} m_1 m_2 & m_1 b_2 + b_1 \\ 0 & 1 \end{bmatrix}$. one-to-one: $\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} = e_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow m = 1, b = 0$. To show $f_{1,0} = e_1$ $f_{1,0} \circ f_{m,b}(x) = f_{1,0}(mx + b) = mx + b \neq f_{m,b}(x)$; $f_{m,b} \circ f_{1,0}(x) \neq f_{m,b}(x)$ onto: It is obvious by definition of ϕ .

Let G be an abelian group with subgroups H and K.

If HK = G and $H \cap K = \{e\}$, then $G \cong H \times K$.

Proof: Define $\phi : H \times K \to G$ by $\phi((h, k)) = hk$ for all $(h, k) \in H \times K$. i) well-defined: It is true since HK = G.

ii) ϕ preserves the products: For all $(h_1, k_1), (h_2, k_2) \in H \times K$ we have

$$\phi((h_1, k_1)(h_2, k_2)) = \phi((h_1h_2, k_1k_2))$$

= $h_1h_2k_1k_2$
 $\stackrel{!}{=} h_1k_1h_2k_2$
= $\phi((h_1, k_1))\phi((h_2, k_2))$

iii) one-to-one: If $\phi((h, k)) = e$ for $(h, k) \in H \times K$, then we have hk = e. $hk = e \quad \rightsquigarrow h = k^{-1} \in H \cap K \quad \rightsquigarrow h = k = e$.

Thus ϕ is one-to-one.

iv) onto: It is true since HK = G.

Let G be a finite abelian group, and let $n \in \mathbf{Z}^+$. Define a function

$$\phi: G \to G$$
 by $\phi(g) = g^n$, for all $g \in G$.

Then ϕ is an isomorphism if and only if G has no non-identity element whose order is a divisor of n.

Proof: The well-definedness of φ is clear. [Why?]
i) φ preserves the products: For any g, h ∈ G, we have φ(gh) = (gh)ⁿ = gⁿhⁿ = φ(g)φ(h).
ii) one-to-one and onto: If φ is one-to-one, then φ is also onto. [Why?] To show that φ is one-to-one. → To show φ(g) = e → g = e. φ(g) = gⁿ = e → g = e ⇔ o(g) ∤ n for all g ≠ e. Thus G has no non-identity element whose order is a divisor of n.

Any cyclic group of even order 2n has exactly one element of order 2. (*)

Proof 1: \rightsquigarrow To show that Z_{2n} has exactly one element of order 2. [Why?] If $o([x]_{2n}) = 2$ then $2[x]_{2n} = [0]_{2n}$, i.e., $2x \equiv 0 \pmod{2n}$. Thus $x \equiv 0 \pmod{n} \longrightarrow x \equiv 0, n \pmod{2n}$, i.e., $x = [0]_{2n}, [n]_{2n}$. However, $x \neq [0]_{2n}$. [Why?] Thus $x = [n]_{2n}$. **Proof 2:** In \mathbb{Z}_{2n} , there is exactly one subgroup H of order 2. In particular, $H \cong \mathbb{Z}_2$ and \mathbb{Z}_2 has exactly one generator. By (\star) , showing that \mathbf{Z}_n^{\times} is not cyclic for some *n* is much easier. Observe that $[-1]_n$ always has order 2 in \mathbf{Z}_n^{\times} ($|\mathbf{Z}_n^{\times}|$ is even) for all $n \geq 3$. \mathbf{Z}_8^{\times} is not cyclic since [3]₈ is another element of order 2. \mathbf{Z}_{15}^{\times} is not cyclic since $[4]_{15}$ is another element of order 2. \mathbf{Z}_{21}^{\times} is not cyclic since $[8]_{21}$ is another element of order 2.

Let
$$H := \left\{ \begin{bmatrix} 1 & 0 \\ c & d \end{bmatrix} \middle| c \in \mathbf{Z}_p, d = \pm 1 \right\} \subseteq \operatorname{GL}_2(\mathbf{Z}_p)$$
. Then $H \cong D_p, p > 2$.

Proof: First, *H* is a subgroup of $GL_2(\mathbb{Z}_p)$. [Why?] And $|H| = 2p = |D_p|$. Recall that $D_p = \{a^k, a^k b \mid 0 \le k < p\}$, where $a^p = e, b^2 = e, ba = a^{-1}b$. Let

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \in H$$
 and $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \in H$

Then $A^p = I_2, B^2 = I_2$ and $A^i \neq A^j B$ for $0 \le i, j < p$. Moreover,

$$BA = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = A^{-1}B.$$

Thus we can define $\phi: H \to D_p$ by $\phi(A) = a$ and $\phi(B) = b$.

From the above calculations, it is clear that ϕ is a group isomorphism.

Recall that $D_n = \{a^k, a^k b \mid 0 \le k < n\}$, where $a^n = e, b^2 = e, ba = a^{-1}b$. $D_{12} \not\cong D_4 \times \mathbf{Z}_3$

Proof: In D_{12} , we have $o(a^k) = \frac{12}{\text{gcd}(k, 12)}$. [Why?] Thus,	
--	--

Q: What about $a^k b$ for $0 \le k < n$? **A**: They all have the order 2. [Why?]

a ^k b												
order	2	2	2	2	2	2	2	2	2	2	2	2

 \rightsquigarrow There are only two elements of order 6 in D_{12} . ("6" is NOT the only choice. e.g., 2) However, there are ten elements of order 6 in $D_4 \times \mathbb{Z}_3$:

- In D_4 , the possible orders of elements are 1, 2, 4. (with #'s 1, 5, 2)
- In Z_3 , the possible orders of elements are 1, 3. (with #'s 1, 2)

 $6 = \operatorname{lcm}[2,3]$: Choose (x, y) such that o(x) = 2 in D_4 and o(y) = 3 in \mathbb{Z}_3 .

$$x \in \{a^2, b, ab, a^2b, a^3b\}$$
 & $y \in \{[1]_3, [2]_3\}$