Exam II Review

Shaoyun Yi

MATH 546/701I

University of South Carolina

Spring 2022

Review

- A group isomorphism ϕ : $(G_1, *) \rightarrow (G_2, \cdot)$
	- Find/Verify ϕ : well-defined; 1-to-1 & onto; respects two operations
	- $\phi(a^n)=(\phi(a))^n$ for all $a\in G_1, n\in {\bf Z}$. e.g., $n=0$ & $n=-1$
	- $o(a) = n \rightsquigarrow o(\phi(a)) = n$ & abelian (cyclic) \rightsquigarrow abelian (cyclic)
- **Lagrange's Theorem If** $|G| = n < \infty$ and $H \subseteq G$, then $|H||n$.
	- The converse is false: e.g., No subgroup of order 6 in A_4
	- $|\langle a \rangle| = o(a) \vert n$ for any $a \in G$.
	- Any group of prime order is cyclic (\rightsquigarrow abelian).
- Cayley's Theorem Every group is isomorphic to a permutation group.
	- Cyclic group: Infinite: \cong Z & Finite: \cong Z_n \rightsquigarrow multiplicative G

subgroups of **Z** & subgroups of **Z**_n $-\rightarrow$ **subgroup diagram** G finite abelian with exponent $N = \max\{o(a)\} \rightsquigarrow G$ cyclic $\Leftrightarrow N = |G|$ \mathbf{Z}_n^{\times} is not always cyclic.

- Dihedral group D_n , $|D_n| = 2n$
- Alternating group $A_n, |A_n| = n!/2$
- Product of two subgroups is not always a subgroup.

If $h^{-1}kh \in K$ for all $h \in H, k \in K$, then HK is a subgroup. $\leadsto G$ abelian

Direct product of $(two \leadsto n)$ groups: e.g., $\mathbf{Z}_n \cong \mathbf{Z}_{p_1^{\alpha_1}} \times \cdots \mathbf{Z}_{p_m^{\alpha_m}} \leadsto \varphi(n)$ The order of an element is the **Icm** of the orders of each component.

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group $G_2 = \left\{ \left\lfloor \begin{array}{cc} m & b \\ 0 & 1 \end{array} \right\rfloor : m \neq 0 \right\}$ under matrix multiplication.

Define $\phi : G_1 \to G_2$ by $\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$. To show ϕ is an isomorphism: well-defined: For $f_{m,b} \in G_1$, we have $\phi(f_{m,b}) \in G_2$ since $m \neq 0$.

For any $f_{m_1,b_1},f_{m_2,b_2}\in G_1$, to show $\phi(f_{m_1,b_1}\circ f_{m_2,b_2})=\phi(f_{m_1,b_1})\phi(f_{m_2,b_2})$: For any $x \in \mathbf{R}$, we have $f_{m_1,b_1} \circ f_{m_2,b_2}(x) = \cdots = m_1 m_2 x + (m_1 b_2 + b_1)$. $\rightarrow \phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1m_2,m_1b_2+b_1}) = \begin{bmatrix} m_1m_2 & m_1b_2+b_1 \ 0 & 1 \end{bmatrix};$ Also $\phi(f_{m_1,b_1})\phi(f_{m_2,b_2}) = \begin{bmatrix} m_1 & b_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} m_2 & b_2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} m_1m_2 & m_1b_2+b_1 \\ 0 & 1 \end{bmatrix}$. one-to-one: $\phi(\mathit{f}_{m,b}) = \left[\begin{smallmatrix} m & b \ 0 & 1 \end{smallmatrix}\right] = e_2 = \left[\begin{smallmatrix} 1 & 0 \ 0 & 1 \end{smallmatrix}\right] \rightsquigarrow m = 1, b = 0.$ To show $\mathit{f}_{1,0} = e_1$ $f_{1,0} \circ f_{m,b}(x) = f_{1,0}(mx + b) = mx + b \leq f_{m,b}(x);$ $f_{m,b} \circ f_{1,0}(x) \leq f_{m,b}(x)$ onto: It is obvious by definition of ϕ .

Let G be an abelian group with subgroups H and K .

If $HK = G$ and $H \cap K = \{e\}$, then $G \cong H \times K$.

Proof: Define $\phi : H \times K \to G$ by $\phi((h, k)) = hk$ for all $(h, k) \in H \times K$. i) well-defined: It is true since $HK = G$.

ii) ϕ preserves the products: For all $(h_1, k_1), (h_2, k_2) \in H \times K$ we have

$$
\phi((h_1, k_1)(h_2, k_2)) = \phi((h_1 h_2, k_1 k_2))
$$

= h₁ h₂ k₁ k₂

$$
\stackrel{.}{=} h_1 k_1 h_2 k_2
$$

= $\phi((h_1, k_1)) \phi((h_2, k_2))$

iii) one-to-one: If $\phi((h, k)) = e$ for $(h, k) \in H \times K$, then we have $hk = e$. $hk = e \qquad \leadsto h = k^{-1} \in H \cap K \qquad \leadsto h = k = e.$

Thus ϕ is one-to-one.

iv) onto: It is true since $HK = G$.

Let G be a finite abelian group, and let $n \in \mathsf{Z}^+$. Define a function

$$
\phi: G \to G \text{ by } \phi(g) = g^n, \text{ for all } g \in G.
$$

Then ϕ is an isomorphism if and only if G has no non-identity element whose order is a divisor of n.

Proof: The well-definedness of ϕ is clear. [Why?] i) ϕ preserves the products: For any $g, h \in G$, we have $\phi(gh) = (gh)^n \stackrel{!}{=} g^n h^n = \phi(g)\phi(h).$ ii) one-to-one and onto: If ϕ is one-to-one, then ϕ is also onto. [Why?]

To show that ϕ is one-to-one. \leadsto To show $\phi(g) = e \leadsto g = e$. $\phi(g) = g^n = e \leadsto g = e \quad \iff \quad o(g) \nmid n \text{ for all } g \neq e.$

Thus G has no non-identity element whose order is a divisor of n. \Box

Any cyclic group of even order 2n has exactly one element of order 2. (\star)

Proof 1: \rightsquigarrow To show that \mathbb{Z}_{2n} has exactly one element of order 2. [Why?]

If $o([x]_{2n}) = 2$ then $2[x]_{2n} = [0]_{2n}$, i.e., $2x \equiv 0 \pmod{2n}$. Thus $x \equiv 0 \pmod{n} \longrightarrow x \equiv 0, n \pmod{2n}, i.e., x = \lfloor 0 \rfloor_{2n}, \lfloor n \rfloor_{2n}.$ However, $x \neq [0]_{2n}$. [Why?] Thus $x = [n]_{2n}$. **Proof 2:** In \mathbb{Z}_{2n} , there is exactly one subgroup H of order 2. In particular, $H \cong \mathbb{Z}_2$ and \mathbb{Z}_2 has exactly one generator.

By (\star) , showing that \mathbb{Z}_n^{\times} is not cyclic for some *n* is much easier.

Observe that $[-1]_n$ always has order 2 in Z_n^\times $(|\mathsf{Z}_n^\times|$ is even) for all $n\geq 3$.

 \mathbf{Z}_8^{\times} is not cyclic since $[3]_8$ is another element of order 2.

 Z^{\times}_{15} is not cyclic since $[4]_{15}$ is another element of order 2.

 Z^\times_{21} is not cyclic since $[8]_{21}$ is another element of order 2.

Let
$$
H := \left\{ \begin{bmatrix} 1 & 0 \\ c & d \end{bmatrix} \middle| c \in \mathbf{Z}_p, d = \pm 1 \right\} \subseteq \text{GL}_2(\mathbf{Z}_p)
$$
. Then $H \cong D_p, p > 2$.

Proof: First, H is a subgroup of $GL_2(\mathbb{Z}_p)$. [Why?] And $|H| = 2p = |D_p|$. Recall that $D_p = \{a^k, a^k b \mid 0 \le k < p\}$, where $a^p = e, b^2 = e, ba = a^{-1}b$. Let

$$
A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \in H \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \in H.
$$

Then $A^p = I_2, B^2 = I_2$ and $A^i \neq A^j B$ for $0 \leq i,j < p$. Moreover,

$$
\mathcal{B}A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = A^{-1}B.
$$

Thus we can define $\phi : H \to D_p$ by $\phi(A) = a$ and $\phi(B) = b$.

From the above calculations, it is clear that ϕ is a group isomorphism.

 a^k | e a a^2 a^3 a^4 a^5 a^6 a^7 a^8 a^9 a^{10} a^{11} $o(a^k)$ 1 12 6 4 3 12 2 12 3 4 6 12

Q: What about a^kb for $0 \le k < n$? A: They all have the order 2. [Why?]

 \rightsquigarrow There are only two elements of order 6 in D_{12} . ("6" is NOT the only choice. e.g., 2) However, there are ten elements of order 6 in $D_4 \times Z_3$:

- In D_4 , the possible orders of elements are 1, 2, 4. (with $\#$'s 1, 5, 2)
- In \mathbb{Z}_3 , the possible orders of elements are 1, 3. (with $\#$'s 1, 2)

 $6 = \text{lcm}[2, 3]$: Choose (x, y) such that $o(x) = 2$ in D_4 and $o(y) = 3$ in \mathbb{Z}_3 .

$$
x \in \{a^2, b, ab, a^2b, a^3b\}
$$
 & $y \in \{[1]_3, [2]_3\}$