Math 546/701I—Exam II

Instructor: Shaoyun Yi

Name: ____

- (1) [15 points] True/False questions: Determine if each of the following is true or false. In each case, explain your answer in detail or give one counterexample if it is false.
 - (a) True or False: $4\mathbf{Z} \cong 8\mathbf{Z}$.

(b) True or False: Let σ be any permutation in S_n . Then σ^2 must be in A_n .

(c) True or False: Let p be a prime number. Then $\mathbf{Z}_p \times \mathbf{Z}_p \cong \mathbf{Z}_{p^2}$.

(d) True or False: Every subgroup of a non-cyclic group is non-cyclic.

(e) True or False: Two finite groups are isomorphic if they have the same order.

(2) **[12 points]** Let $G = \{x \in \mathbf{R} \mid x > 0 \text{ and } x \neq 1\}$, and define * on G by $a * b = a^{\ln b}$ for all $a, b \in G$.

In Homework 2 (4), we have already shown that (G, *) is an abelian group and the identity element is the natural number e.

Prove that (G, *) is isomorphic to the group \mathbf{R}^{\times} under the standard multiplication.

(3) (a) [6 points] Let G be a group and let $g \in G$ be an element of order 100. List all possible powers of g that have order 5. (Hint: Consider the cyclic subgroup $\langle g \rangle$ generated by g.)

(b) [6 pts] Let $G = \mathbf{Z}_{100}$. List all possible choice of $[k]_{100}$ such that $\langle [k]_{100} \rangle = \langle [15]_{100} \rangle$.

(c) [6 points] Give the subgroup diagram of \mathbf{Z}_{100} .

- (4) **[15 points]** Recall that $D_n = \{a^k, a^k b \mid 0 \le k < n\}$, where $a^n = e, b^2 = e$, and $ba = a^{-1}b$. Moreover, in Homework 7 (3), we have already shown that $ba^m = a^{-m}b$ for all $m \in \mathbb{Z}$.
 - (a) [3 points] Show that $(a^k b)^2 = e$ for each $0 \le k < n$.

(b) [8 points] Find the order of each element of D_{10} . (Hint:Use part (a).)

(c) [4 points] Is D_{10} isomorphic to $\mathbf{Z}_4 \times \mathbf{Z}_5$? Show work to support your answer.