Math 546/701I—Exam I

Math 546/701I—**Exam I**
\n**Instruction:** Shaoyun Yi **Name:**
\n(1) **[15 pts]** Let
$$
S = \{x \in \mathbb{R} \mid x \neq 3\}
$$
. Define * on S by $a * b = 12 - 3a - 3b + ab$.
\nProve that $(S, *)$ is a group.
\n(i) Closure: We need to show $a * b \in S$ for any $a, b \in S$. That is, we need to show $a * b \neq 3$ for any real numbers $a \neq 3, b \neq 3$.
\n $a * b = 12 - 3a - 3b + ab = 3 + (3 - a)(3 - b) \neq 3$ since $(3 - a)(3 - b) \neq 0$. \checkmark
\n(ii) Associivity: For any $a, b, c \in S$, we need to show $(a * b) * c = a * (b * c)$.
\n $(a * b) * c = (12 - 3a - 3b + ab) + c$
\n $= 12 - 3(12 - 3a - 3b + ab) - 3c + (12 - 3a - 3b + ab)c$
\n $= 24 + 9a + 9b + 9c - 3ab - 3ac - 3bc + abc$
\n $a * (b * c) = a * (12 - 3b - 3c + bc)$
\n $= 12 - 3a - 3(12 - 3b - 3c + bc) + a(12 - 3b - 3c + bc)$
\n $= 12 - 3a - 3(12 - 3b - 3c + bc) + a(12 - 3b - 3c + bc)$
\n $= 24 + 9a + 9b + 9c - 3ab - 3ab - 3ac + abc$
\n(iii) Identity: The identity element $c = 4$.
\n(ii) Matrix
\n $a * a = 12 - 3a - 12 + 4a = a$ and $4 * a = 12 - 12 - 3a + 4a = a$.
\n(iv) Inverses: The inverse of a is $\frac{8 - 3a}{3 - a} = 12 - 3a + \frac{8 - 3a}{3 - a} = 12 - 3a + \frac{24 +$

1

(2) (a) [6 pts] Find the cyclic subgroup of S_8 generated by the element (135)(68).

Using the property that the disjoint cycles commute with each other makes your calculations simpler. Note that the order of $(135)(68)$ is lcm[3, 2] = 6.

2) (a) **[6 pts]** Find the cyclic subgroup of
$$
S_8
$$
 generated by the element (135)(
Using the property that the disjoint cycles commute with each other make
calculations simpler. Note that the order of (135)(68) is lcm[3, 2] = 6.
 $((135)(68))^2 = (133)(135)(68) = (68)$
 $((135)(68))^4 = (153)(135)(68) = (133)(68)^2 = (135)$
 $((135)(68))^6 = (133)(135)(68) = (133)(68)^2 = (135)$
 $((135)(68))^6 = (153)(135)(68) = (153)(135)(68)(68) = (1)$
Thus, the cyclic subgroup of S_8 generated by the element (135)(68).
Thus, the *(vclic subgroup of S_8 generated by the element (135)(68)).

Thus, the *(vclic subgroup of S_8 generated by the elements (135)(68)).

(135)(68)) = { (1), (135), (153), (68), (135)(68), (153)(68).

(b) **[6 pts]** Find a subgroup *H* of S_8 that contains 15 elements.
You do not have to list all of the elements in H. Just prove it. That is,
Prove that H (the one you find) is a subgroup of order 15 in S_8 .
As we know that the order of a product of disjoint cycles is the least con-
lcm[3, 5] = 15. In particular, let $H = ((12345)(678))$. Since the cyclic subgre-
is generated by (12345)(678), thus $|H| = |\langle (12345)(678) \rangle| = o((12345)(678)) =$**

Thus, the cyclic subgroup of S_8 generated by the element $(135)(68)$ is $\langle (135)(68) \rangle = \{(1), (135), (153), (68), (135)(68), (153)(68)\}.$

(b) $[6 \text{ pts}]$ Find a subgroup H of S_8 that contains 15 elements. You do not have to list all of the elements in H. Just prove it. That is, Prove that H (the one you find) is a subgroup of order 15 in S_8 .

As we know that the order of a product of disjoint cycles is the least common multiple of their lengths, then the element (12345)(678) is a desired example since lcm[3, 5] = 15. In particular, let $H = \langle (12345)(678) \rangle$. Since the cyclic subgroup H is generated by $(12345)(678)$, thus $|H| = |\langle (12345)(678) \rangle| = o((12345)(678)) = 15$.

(3) $[12 \text{ pts}]$ Let G be a group and the center of G is defined as

$$
Z = \{ x \in G \mid xg = gx \text{ for all } g \in G \}.
$$

Note: We have already showed that Z is a subgroup of G in Homework $3(8)$. Let H be a subgroup of G . Prove that the set

$$
HZ = \{hz \mid h \in H, z \in Z\}
$$

is a subgroup of G .

- (i) Closure: For $h_1z_1, h_2z_2 \in HZ$, we need to show that $(h_1z_1)(h_2z_2) \in HZ$. $(h_1z_1)(h_2z_2) = ((h_1z_1)h_2)z_2 = (h_1(z_1h_2))z_2 \stackrel{!}{=} (h_1(h_2z_1))z_2 = (h_1h_2)(z_1z_2)\checkmark$ In the above calculation, $\frac{1}{n}$ holds by the definition of Z. $(h_1z_1)(h_2z_2) = (h_1h_2)(z_1z_2) \in HZ$ since H and Z are subgroups of G.
- (ii) Identity: The identity element $e \in HZ$ since $e = ee \in HZ$.
- 3) [12 pts] Let G be a group and the center of G is defined as

Note: We have advantage showed for $S = \{x \in G \mid x = g \in \pi$ and $g \in G$.

Note: We have advantage for $\{x \in X\}$ as subspace of G in *Homehoorth 3* (8)

Let (iii) Inverses: For any element $hz \in HZ$, its inverse is $h^{-1}z^{-1} \in HZ$. $(hz)(h^{-1}z^{-1}) = hzh^{-1}z^{-1} = h(zh^{-1})z^{-1} = h(h^{-1}z)z^{-1} = (hh^{-1})(zz^{-1}) = e$ $(h^{-1}z^{-1})(hz) = h^{-1}z^{-1}hz = h^{-1}(z^{-1}h)z = h^{-1}(hz^{-1})z = (h^{-1}h)(z^{-1}z) = e$ Or, in G, we have $(hz)^{-1} = z^{-1}h^{-1}$. So for $hz \in HZ$, we have $(hz)^{-1} =$
	- $z^{-1}h^{-1} \stackrel{!}{=} h^{-1}z^{-1} \in HZ$. Here we see $z^{-1} \in Z$ since Z is a subgroup.

Another way: It is clear that $h^{-1}zh = h^{-1}hz = z \in Z$ for all $h \in H$ and $z \in Z$. Thus HZ is a subgroup of G .

- (4) (a) [5 pts] What is the order of $([15]_{20}, [20]_{24})$ in $\mathbb{Z}_{20} \times \mathbb{Z}_{24}$? $o([15]_{20}) = o([-5]_{20}) = 4$ and $o([20]_{24}) = o([-4]_{24}) = 6$. Thus, the order of $([15]_{20}, [20]_{24})$ is lcm $[4, 6] = 12$.
- 4) (a) (5 pts) What is the order of $(\lfloor 15 \rfloor_{20}, \lfloor 20 \rfloor_{21})$ in $\mathbb{Z}_{20} \times \mathbb{Z}_{21}$?

col[15 $\frac{1}{20} = o(\lfloor -5 \rfloor_{20}) = 4$ and $o(\lfloor 15 \rfloor_{20}, \lfloor 20 \rfloor_{21})$ is lemi-[1,6] -12 .

Thus, the order of $(\lfloor 15 \rfloor_{20}, \lfloor 2$ (b) [8 pts] What is the largest order of an element in $\mathbb{Z}_{20} \times \mathbb{Z}_{24}$? And then use your answer to show that $\mathbb{Z}_{20} \times \mathbb{Z}_{24}$ is not cyclic. In \mathbb{Z}_{20} , the possible orders are $1, 2, 4, 5, 10$, and 20 . In \mathbb{Z}_{24} , the possible orders are $1, 2, 3, 4, 6, 8, 12$, and 24. The largest possible least common multiple we can have is $\text{lcm}[20, 24] = 120$. So there is no element of order $|\mathbf{Z}_{20} \times \mathbf{Z}_{24}| = 480$ and the group is not cyclic. Another way to see that $\mathbb{Z}_{20} \times \mathbb{Z}_{24}$ is not cyclic since $gcd(20, 24) \neq 1$.
	- (c) [8 pts] Let $G = \mathbb{Z}_{10}^{\times} \times \mathbb{Z}_{10}^{\times}$. Let $H = \langle (3, 7) \rangle$ and $K = \langle (7, 7) \rangle$. Find HK in G. Here, $(3, 7)$ means $([3]_{10}, [7]_{10})$. Use this simplified notations in your answer. $H = \langle (3, 7) \rangle = \{(3, 7)^m, m \in \mathbb{Z}\} = \{(1, 1), (3, 7), (9, 9), (7, 3)\}$ has order 4 $K = \langle (7, 7) \rangle = \{ (7, 7)^m, m \in \mathbb{Z} \} = \{ (1, 1), (7, 7), (9, 9), (3, 3) \}$ has order 4 $HK = \{(1, 1), (3, 7), (9, 9), (7, 3), (1, 9), (9, 1), (3, 3), (7, 7)\}\$ has order $8 = 4 \cdot 4/2$