Exam I Review

Shaoyun Yi

MATH 546/701I

University of South Carolina

Spring 2022

• Group (G, *): i) Closure ii) Associativity iii) Identity iv) Inverses

 \Box abelian (eg. $(Z_n, +_{[]}), (Z_n^{\times}, \cdot_{[]})$) v.s. nonabelian (eg. $S_n, n \ge 3$)

 $\Box \text{ finite } \left(\text{eg. } |\mathbf{Z}_n| = n, \ |\mathbf{Z}_n^{\times}| = \varphi(n) \right) \quad \text{v.s. infinite } \left(\text{eg. } (\mathbf{Z}, +) \right)$

• Subgroup (H, *): i), iii), iv) $\Leftrightarrow H \neq \emptyset$ and $ab^{-1} \in H$ for all $a, b \in H$

- $\diamond \ |H| < \infty \colon H \text{ is a subgroup } \Leftrightarrow H \neq \emptyset \text{ and } ab \in H \text{ for all } a, b \in H$
- ♦ Cyclic subgroup $\langle a \rangle$ is the *smallest* subgroup of *G* containing *a* ∈ *G*.
- ♦ *G* is cyclic if $G = \langle a \rangle$; $|\langle a \rangle| = o(a)$; If $o(a) < \infty$, then $a^k = e \Leftrightarrow o(a)|k$
- ♦ Lagrange's Theorem: If $|G| < \infty$ and $H \subseteq G$, then |H| ||G|.
 - $\triangleright o(a) ||G|$ for any $a \in G$. \rightsquigarrow Euler's Theorem
 - ▷ Any group of prime order is cyclic.

• Constructing (sub)groups:

- $H \cap K$ is the *largest* subgroup contained in both H and K.
- Product HK is not always a subgroup of G.
 - $h^{-1}kh \in K \checkmark \rightarrow HK$ is the *smallest* subgroup containing both H and K

• $|HK| = |H||K|/|H \cap K|$ if $|G| < \infty$.

- Direct product $G_1 \times G_2$ is a group under the operation $(*_1, *_2)$.
 - $\odot o((a_1, a_2)) = [o(a_1), o(a_2)]; |G_1 \times G_2| = |G_1| \cdot |G_2| \text{ if } G_1, G_2 \text{ are finite.}$

 \odot **Z**_n × **Z**_m is cyclic \Leftrightarrow gcd(n, m) = 1.

• Subgroup $\langle S \rangle$ generated by S; New groups defined over a field F.

Let $S = \mathbf{R} - \{-1\}$. Define * on S by a * b = a + b + ab, for all $a, b \in S$. Show that (S, *) is an abelian group.

Proof: i) **Closure:** To show $a * b \in S$, i.e., $a + b + ab \neq -1$ for all $a, b \in S$ Proof by contradiction: Assume a + b + ab = -1 for some $a, b \in S$

$$a+b+ab+1=0 \quad \Rightarrow (a+1)(b+1)=0 \quad \Rightarrow a \stackrel{!}{=} -1 \text{ or } b \stackrel{!}{=} -1$$

ii) Associativity: $(a * b) * c = \cdots = a * (b * c)$ for all $a, b, c \in S$

Commutativity: $a * b = \cdots = b * a$ for all $a, b \in S$

iii) Identity: 0 By Commutativity, we only need to check one equation

 $a * 0 = \cdots = a$ for all $a \in S$.

iv) Inverses: $\frac{-a}{a+1}$ By Commutativity, only need to check one equation

$$a * \frac{-a}{a+1} = \cdots = 0$$
 for all $a \in S$.

Let H be any subgroup of G and $a \in G$. Then aHa^{-1} is a subgroup of G.

Proof: Note that $aHa^{-1} = \{g \in G : g = aha^{-1} \text{ for some } h \in H\}$. **Closure:** Let $g_i = ah_ia^{-1}, i = \{1, 2\}$. Then $g_1g_2 = a(h_1h_2)a^{-1} \in aHa^{-1}$. **Identity:** $e = aea^{-1} \in aHa^{-1}$. **Inverses:** $g = aha^{-1} \in aHa^{-1} \Rightarrow g^{-1} = ah^{-1}a^{-1} \in aHa^{-1}$. **Way 2:** Nonempty e; $g_1g_2^{-1} = ah_1a^{-1}(ah_2a^{-1})^{-1} = ah_1h_2^{-1}a^{-1}$ Let G be an abelian group, and let n be a fixed positive integer. Define $N := \{g \in G : g = a^n \text{ for some } a \in G\}$.

Then N is a subgroup of G.

Way 2: To show N is nonempty and $g_1g_2^{-1} \in N$ for all $g_1, g_2 \in N$.

• The identity element $e \in N$ since $e = e^n$.

• Let
$$g_1 = a_1^n$$
 and $g_2 = a_2^n$ for some $a_1, a_2 \in G$. Then

$$g_1g_2^{-1} = a_1^n(a_2^n)^{-1} = a_1^na_2^{-n} = a_1^n(a_2^{-1})^n \stackrel{!}{=} (a_1a_2^{-1})^n \in N.$$

Shaoyun Yi

Let H, K, L be subgroups of the group G and $H \subseteq K$. Prove that $H(K \cap L) = K \cap HL.$

Note: This is an equality of sets, since they may not be subgroups.

Proof: \subseteq : For any $a \in H(K \cap L)$, there exist $h \in H, t \in K \cap L$ such that

$$a = ht. \quad \rightsquigarrow \begin{cases} a \in K \quad [Why?] \\ \\ a \in HL \quad [Why?] \end{cases}$$

⊇: For any $a \in K \cap HL$, there exist $h \in H$ and $\ell \in L$ such that

$$a = h\ell$$
 and $a = k$ for some $k \in K$. (*)

To show $\ell \in K$ since $\ell \in H$ already. $\stackrel{(\star)}{\Longrightarrow} \ell = h^{-1}k \stackrel{!}{\in} K$ [Why?]