Exam I Review

Shaoyun Yi

MATH 546/701I

University of South Carolina

Spring 2022

• Group $(G, *)$: i) Closure ii) Associativity iii) Identity iv) Inverses

 \square abelian (eg. $(\mathsf{Z}_n, +_{[\]}), (\mathsf{Z}_n^{\times}, \cdot_{[\]}))$ v.s. nonabelian (eg. $S_n, n \geq 3)$

□ finite (eg. $|Z_n| = n$, $|Z_n^{\times}| = \varphi(n)$) v.s. infinite (eg. $(Z, +)$)

- Subgroup $(H, *)$: i), iii), iv) $\Leftrightarrow H \neq \emptyset$ and $ab^{-1} \in H$ for all $a, b \in H$
	- \Diamond |H| $< \infty$: H is a subgroup \Leftrightarrow H \neq Ø and ab \in H for all a, b \in H
	- \circ Cyclic subgroup $\langle a \rangle$ is the smallest subgroup of G containing $a \in G$.
	- $\Diamond\;\; G$ is cyclic if $G=\langle a\rangle;\: |\langle a\rangle|=o(a);$ If $o(a)<\infty,$ then $a^k=e \Leftrightarrow o(a)|k$
	- ◇ Lagrange's Theorem: If $|G| < \infty$ and $H \subseteq G$, then $|H|||G|$.
		- ▷ $o(a)||G|$ for any $a \in G$. \rightsquigarrow Euler's Theorem
		- \triangleright Any group of prime order is cyclic.
- Constructing (sub)groups:
	- \circ $H \cap K$ is the *largest* subgroup contained in both H and K.
	- \circ Product HK is not always a subgroup of G.
		- \odot $h^{-1}kh \in K$ \checkmark → HK is the smallest subgroup containing both H and K

 \odot $|HK| = |H||K|/|H \cap K|$ if $|G| < \infty$.

- Direct product $G_1 \times G_2$ is a group under the operation $(*_1, *_2)$.
	- $\circ \circ \circ ((\mathsf{a}_1,\mathsf{a}_2)) = [\mathsf{o}(\mathsf{a}_1),\mathsf{o}(\mathsf{a}_2)]; \quad |G_1 \times G_2| = |G_1| \cdot |G_2|$ if G_1, G_2 are finite.

 \odot **Z**_n × **Z**_m is cyclic \Leftrightarrow gcd(n, m) = 1.

 \circ Subgroup $\langle S \rangle$ generated by S; New groups defined over a field F.

Let $S = \mathbf{R} - \{-1\}$. Define $*$ on S by $a * b = a + b + ab$, for all $a, b \in S$. Show that $(S, *)$ is an abelian group.

Proof: i) Closure: To show $a * b \in S$, i.e., $a+b+ab \neq -1$ for all $a, b \in S$ Proof by contradiction: Assume $a + b + ab = -1$ for some $a, b \in S$

 $a+b+ab+1=0 \hspace{0.3cm} \Rightarrow (a+1)(b+1)=0 \hspace{0.3cm} \Rightarrow a=-1 \hspace{0.2cm}$ or $b=-1$

ii) Associativity: $(a * b) * c = \cdots = a * (b * c)$ for all $a, b, c \in S$

Commutativity: $a * b = \cdots = b * a$ for all $a, b \in S$

 \overline{iii}) Identity: 0 By Commutativity, we only need to check one equation

$$
a * 0 = \cdots = a \quad \text{for all } a \in S.
$$

iv) Inverses: $\frac{-a}{a+1}$ By Commutativity, only need to check one equation

$$
a * \frac{-a}{a+1} = \cdots = 0 \quad \text{for all } a \in S.
$$

Let H be any subgroup of G and $a\in G$. Then aHa^{-1} is a subgroup of $G.$

Proof: Note that $aHa^{-1} = \{g \in G : g = aha^{-1}$ for some $h \in H\}$. **Closure:** Let $g_i = ah_ia^{-1}, i = \{1,2\}.$ Then $g_1g_2 = a(h_1h_2)a^{-1} \in aHa^{-1}.$ **Identity:** $e = aea^{-1} \in aHa^{-1}$. Inverses: $g = aha^{-1} \in aHa^{-1}$ $\Rightarrow g^{-1} = ah^{-1}a^{-1} \in aHa^{-1}$. **Way 2:** Nonempty e; $g_1g_2^{-1} = ah_1a^{-1}(ah_2a^{-1})^{-1} = ah_1h_2^{-1}a^{-1}$ Let G be an abelian group, and let n be a fixed positive integer. Define $N := \{ g \in G : g = a^n \text{ for some } a \in G \}.$

Then N is a subgroup of G .

Way 2: To show N is nonempty and $g_1g_2^{-1} \in N$ for all $g_1, g_2 \in N$.

The identity element $e \in N$ since $e = e^n$.

• Let
$$
g_1 = a_1^n
$$
 and $g_2 = a_2^n$ for some $a_1, a_2 \in G$. Then
\n $g_1 g_2^{-1} = a_1^n (a_2^n)^{-1} = a_1^n a_2^{-n} = a_1^n (a_2^{-1})^n \stackrel{!}{=} (a_1 a_2^{-1})^n \in N$.

Let H, K, L be subgroups of the group G and $H \subseteq K$. Prove that $H(K \cap L) = K \cap HL$.

Note: This is an equality of sets, since they may not be subgroups.

Proof: \subseteq : For any $a \in H(K \cap L)$, there exist $h \in H, t \in K \cap L$ such that

$$
a = ht. \quad \leadsto \begin{cases} a \in K & \text{[Why?]} \\ \\ a \in HL & \text{[Why?]} \end{cases}
$$

 \supseteq : For any $a \in K \cap HL$, there exist $h \in H$ and $\ell \in L$ such that

$$
a = h\ell \quad \text{and} \quad a = k \text{ for some } k \in K. \qquad (*)
$$

To show $\ell \in K$ since $\ell \in H$ already. $\stackrel{(\star)}{\Longrightarrow} \ell = h^{-1}k \stackrel{!}{\in} K \quad [Why?]$