§3.7 Homomorphisms

Shaoyun Yi

MATH 546/701I

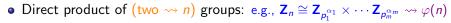
University of South Carolina

Summer 2021

Review (Brief Version of Exam II Review)

- A group isomorphism $\phi: (G_1, *) \to (G_2, \cdot)$ Find/Verify ϕ
- Lagrange's Theorem If $|G| = n < \infty$ and $H \subseteq G$, then |H| |n.
- Cayley's Theorem Every group is isomorphic to a permutation group.
 - Cyclic group: Infinite: $\cong Z$ & Finite: $\cong Z_n \longrightarrow \text{multiplicative } G$
 - **Dihedral group** D_n of order 2n
 - Alternating group A_n of order n!/2
- Product of two subgroups is **not** always a subgroup.

If $h^{-1}kh \in K$ for all $h \in H, k \in K$, then HK is a subgroup. $\rightsquigarrow G$ abelian $\stackrel{\mathbf{U}}{\smile}$



The order of an element is the **Icm** of the orders of each component.

Shaoyun Yi Homomorphisms Summer 2021 2 / 16

Group Homomorphism

A function
$$\phi: (G_1,*) \to (G_2,\cdot)$$
 is a **group homomorphism** if
$$\phi(a*b) = \phi(a) \cdot \phi(b) \qquad \text{for all } a,b \in G_1.$$

Every isomorphism is a homomorphism, but conversely not true.

Example 1 (Determinant of an invertible matrix, n > 1)

Let $G_1 = \operatorname{GL}_n(\mathbf{R})$ and $G_2 = \mathbf{R}^{\times}$. Define $\phi : G_1 \to G_2$ by $\phi(A) = \det(A)$.

 ϕ is a group homomorphism. [Why?] However, ϕ is not an isomorphism.

 ϕ is not one-to-one since different matrices could have the same det.

 ϕ is onto. e.g., consider a diagonal matrix $\operatorname{diag}(a,1,\ldots,1)$ for any $a\in \mathbf{R}^{\times}$.

Example 2 (Parity of an integer)

Define $\phi: \mathbf{Z} \to \mathbf{Z}_2$ by $\phi(n) = [n]_2$. ϕ is a homomorphism. [Why?]

But ϕ is not an isomorphism since it is not one-to-one. [Why?] ϕ is onto.

Parity of an integer: n is even $\Leftrightarrow \phi(n) = [0]_2 \& n$ is odd $\Leftrightarrow \phi(n) = [1]_2$

Properties of Homomorphisms

Let $\phi: (G_1, *, e_1) \rightarrow (G_2, \cdot, e_2)$ be a group homomorphism.

- i) $\phi(e_1) = e_2$.
- ii) $\phi(a^{-1}) = (\phi(a))^{-1}$ for all $a \in G_1$.
- iii) $\phi(a^n) = (\phi(a))^n$ for all $a \in G_1$ and all $n \in \mathbf{Z}$.
- iv) If o(a) = n in G_1 , then $o(\phi(a))$ in G_2 is a divisor of n.

Proof: Proofs of i)-iii) are the same as in the case of a group isomorphism.

i)
$$\phi(e_1) \cdot \phi(e_1) = \phi(e_1 * e_1) = \phi(e_1) \longrightarrow \phi(e_1) = e_2$$
.

ii)
$$\phi(a) \cdot \phi(a^{-1}) = \phi(a * a^{-1}) = \phi(e_1) \stackrel{\text{i}}{=} e_2 \quad \leadsto \phi(a^{-1}) = (\phi(a))^{-1}.$$

iii) Just as in the case of an isomorphism, use an induction argument.

iv)
$$(\phi(a))^n \stackrel{\text{iii}}{=} \phi(a^n) = \phi(e_1) \stackrel{\text{i}}{=} e_2$$
. Thus $o(\phi(a))|n$. [Why?]

Shaoyun Yi Homomorphisms Summer 2021

Example 3 (Exponential functions for groups)

Let G be a group and $a \in G$. Define $\phi : \mathbf{Z} \to G$ by $\phi(n) = a^n$ for all $n \in \mathbf{Z}$.

- ϕ is a homomorphism since $\phi(n+m)=a^{n+m}=a^na^m=\phi(n)\cdot\phi(m)$.
- ϕ is onto if and only if $G = \langle a \rangle$. ϕ is one-to-one if and only if $o(a) = \infty$.

Example 4 (Linear functions on \mathbf{Z}_n)

For a fixed $m \in \mathbf{Z}$, define $\phi : \mathbf{Z}_n \to \mathbf{Z}_n$ by $\phi([x]) = [mx]$ for all $[x] \in \mathbf{Z}_n$.

- ϕ is well-defined: If $x \equiv y \pmod{n}$, then $mx \equiv my \pmod{n}$.
- ϕ is a homomorphism since $\phi([x] + [y]) = \cdots = \phi(x) + \phi(y)$.
- ϕ is one-to-one and onto if and only if (m, n) = 1.

Linear congruence $mx \equiv y \pmod{n}$ has a solution if and only if (m, n)|y.

Let d = (m, n). If d|y, then there are d distinct solutions modulo n.

Shaoyun Yi Homomorphisms Summer 2021 5 / 16

Homomorphisms Defined on Cyclic Groups

Let $C = \langle a \rangle$. Define a homomorphism $\phi : C \to G$ by $\phi(a) = g . \leadsto \phi(a^m) = g^m$ It follows that ϕ is completely determined by its value on a. [Why?] If $o(a) = n < \infty$, then o(g)|n since $g = \phi(a)$ and ϕ is a homomorphism.

Any homomorphism $\phi \colon \mathbf{Z}_n \to \mathbf{Z}_k$ is completely determined by $\phi([1]_n)$. Say, $\phi([1]_n) = [m]_k$ with $o([m]_k)|n$. So $n \cdot [m]_k = [nm]_k = [0]_k \rightsquigarrow k|mn$.

- $\phi([x]_n) = [xm]_k$ defines a homomorphism if and only if k|mn.
- Every homomorphism $\phi: \mathbf{Z}_n \to \mathbf{Z}_k$ must be of this form.
- $\phi(\mathbf{Z}_n)$ is the cyclic subgroup generated by $[m]_k$ since $\phi([1]_n) = [m]_k$. $\leadsto \phi$ is onto if and only if $[m]_k$ is a generator of \mathbf{Z}_k , i.e., (m, k) = 1.
- e.g., $\phi\colon \mathbf{Z}_{10}\to \mathbf{Z}_5$ with $\phi([1]_{10})=[2]_5$ is an onto homomorphism. However, ϕ is not one-to-one. For example, $\phi([1]_{10})=\phi([6]_{10})=[2]_5$. In fact, if 5|(x-y), then $\phi([x]_{10})=\phi([y]_{10})$. [Why?]

Kernel and Image of a Homomorphism

Let $\phi: G_1 \to G_2$ be a group homomorphism. The **kernel** of ϕ is the set

$$\ker(\phi) = \{x \in G_1 \mid \phi(x) = e_2\} \subseteq G_1.$$

The **image** of ϕ is the set $\operatorname{im}(\phi) = \{\phi(x) \mid x \in G_1\} \subseteq G_2$.

Recall that $\phi \colon \mathbf{Z}_{10} \to \mathbf{Z}_5$ with $\phi([1]_{10}) = [2]_5$ is an onto homomorphism.

$$\rightarrow \text{im}(\phi) = \mathbf{Z}_5$$
. And $\text{ker}(\phi) = \{[0]_{10}, [5]_{10}\}$. [Why?]

Revisit Example 3: Exponential functions for groups

Define $\phi: \mathbf{Z} \to G$ by $\phi(n) = a^n$ for all $n \in \mathbf{Z}$. Then ϕ is a homomorphism.

By definition, $ker(\phi) = \{n \mid a^n = e\}.$

- If $o(a) = m < \infty$, then $\ker(\phi) = \langle m \rangle = m\mathbf{Z}$.
- If $o(a) = \infty$, then $\ker(\phi) = \{0\}$. $\leadsto \phi$ is 1-to-1 in this case. [Why?]

In either case, $ker(\phi)$ is a subgroup of **Z**.

By definition, $\operatorname{im}(\phi) = \{a^n \mid n \in \mathbf{Z}\} =: \langle a \rangle$, which is a subgroup of G.

 $\rightsquigarrow \phi$ is onto if and only if $G = \langle a \rangle$.

More Properties of Homomorphisms

Let $\phi: \overline{G_1} \to \overline{G_2}$ be a group homomorphism.

- i) $ker(\phi)$ is a subgroup of G_1 .
- ii) $im(\phi)$ is a subgroup of G_2 .
- iii) ϕ is one-to-one if and only if $ker(\phi) = \{e_1\}$.
- iv) ϕ is onto if and only if $im(\phi) = G_2$.

Proof: i)
$$\ker(\phi)$$
 is nonempty since $e_1 \in \ker(\phi)$. For $a, b \in \ker(\phi)$, to show $ab^{-1} \in \ker(\phi)$: $\phi(ab^{-1}) = \phi(a)\phi(b^{-1}) = e_2e_2^{-1} = e_2$.

- ii) $\operatorname{im}(\phi)$ is nonempty since $e_2 \in \operatorname{im}(\phi)$. For $x, y \in \operatorname{im}(\phi)$, to show $xy^{-1} \in \operatorname{im}(\phi)$
- Say $\phi(a)=x$ and $\phi(b)=y$ for some $a,b\in G_1$. So $xy^{-1}=\cdots=\phi(ab^{-1})$.
- iii) ϕ is one-to-one $\stackrel{\S 3.4}{\Longleftrightarrow} \phi(x) = e_2$ implies $x = e_1$, i.e., $\ker(\phi) = \{e_1\}$.
- iv) It is clear that ϕ is onto if and only if $\operatorname{im}(\phi) = G_2$.

Let $\phi: G_1 \to G_2$ be a group homomorphism. Assume that ϕ is onto.

If G_1 is abelian (resp. cyclic), then G_2 is also abelian (resp. cyclic).

Let $\phi: G_1 \to G_2$ be a group homomorphism. Assume that ϕ is onto.

- i) If G_1 is abelian, then G_2 is also abelian.
- ii) If G_1 is cyclic, then G_2 is also cyclic.

Proof: i) For $x, y \in G_2$, there exist $a, b \in G_1$ s.t. $\phi(a) = x, \phi(b) = y$.

$$xy = \phi(a)\phi(b) = \phi(ab) \stackrel{!}{=} \phi(ba) = \phi(b)\phi(a) = yx.$$

- ii) Let $G_1 = \langle a \rangle$ for a generator $a \in G_1$. To show $G_2 = \langle \phi(a) \rangle$.
 - $\langle \phi(a) \rangle \subseteq G_2 : \checkmark [Why?]$
 - $G_2 \subseteq \langle \phi(a) \rangle$: To show every element y of G_2 is a power of $\phi(a)$.

We can write $y = \phi(b)$ for some $b \in G_1$. [Why?]

We can also write $b = a^m$ for some $m \in \mathbf{Z}$. [Why?] This implies that

$$y = \phi(b) = \phi(a^m) = (\phi(a))^m.$$

Two comments:

- i) and ii) are not necessarily true if ϕ is not onto.
- If o(a) = n in G_1 , then $o(\phi(a))$ in G_2 is a divisor of n. (See slide # 4)

Homorphisms Between Cyclic Groups

In slide # 6, we define a homomorphism $\phi: \mathbf{Z}_n \to \mathbf{Z}_k$ by $\phi([x]_n) = [mx]_k$.

Recall ϕ well-defined $\Leftrightarrow k|mn$. Every homomorphism $\phi: \mathbf{Z}_n \to \mathbf{Z}_k$ is of this form.

Find all homomorphisms from Z to Z, from Z to Z_n , and from Z_n to Z.

Let m be a fixed integer. Define a function $\phi : \mathbf{Z} \to \mathbf{Z}$ by $\phi(x) = mx$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof: ϕ is a homomorphism since $\phi(x+y) = \cdots = \phi(x) + \phi(y)$.

 ϕ is completely determined by its value on 1. [Why?] Say $\phi(1)=m\in {f Z}$.

For
$$x \in \mathbf{Z}^+$$
, $\phi(x) = \phi(1 + \dots + 1) = \phi(1) + \dots + \phi(1) = x\phi(1) = mx$.

For
$$x \in \mathbf{Z}^-$$
, so $x = -|x| : \phi(x) = \phi(-|x|) = -\phi(|x|) = -m|x| = mx$.

Let $[m]_n \in \mathbf{Z}_n$. Define a function $\phi : \mathbf{Z} \to \mathbf{Z}_n$ by $\phi(x) = [mx]_n$.

Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof: The proof is the same as for homomorphisms $Z \rightarrow Z$.

The **only** homomorphism $\mathbf{Z}_n \to \mathbf{Z}$ is defined by $\phi([x]_n) = 0$ for $[x]_n \in \mathbf{Z}_n$.

Proof: $o([x]_n) = d \leadsto o(\phi([x]_n))|d$. But in **Z**, only 0 has a finite order. \square

Shaoyun Yi Homomorphisms Summer 2021 10 / 16

Normal Subgroup

Let $\phi: G_1 \to G_2$ be a homomorphism.

Let g be any element in G_1 . Then $gkg^{-1} \in \ker(\phi)$ for all $k \in \ker(\phi)$.

Proof:
$$\phi(gkg^{-1}) = \phi(g)\phi(k)\phi(g^{-1}) = \phi(g)e_2\phi(g)^{-1} = e_2$$

A subgroup H of the group G is called a **normal** subgroup if $ghg^{-1} \in H$ for all $h \in H$ and $g \in G$.

- \leadsto For a homomorphism $\phi: G_1 \to G_2$, $\ker(\phi)$ is a normal subgroup of G_1 .
- 1) If H = G or $H = \{e\}$, then H is normal.
- 2) Any subgroup of an abelian group is normal.

Shaoyun Yi Homomorphisms Summer 2021 11 ,

How (Normal) Subgroups are Related via a Homomorphism

Let $\phi: G_1 \to G_2$ be a homomorphism.

- i) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 .
- ii) If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .
- iii) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of G_1 .
- iv) If H_2 is normal in G_2 , then $\phi^{-1}(H_2)$ is normal in G_1 .

Proof: i) Nonempty: $e_2 \in \phi(H_1)$. For $x, y \in \phi(H_1)$, there exist $a, b \in H_1$ with $\phi(a) = x$ and $\phi(b) = y$, and $xy^{-1} = \cdots = \phi(ab^{-1}) \in \phi(H_1)$.

ii) Let $x \in G_2$ and $y \in \phi(H_1)$. To show $xyx^{-1} \in \phi(H_1)$.

There exist $g \in G_1$ s.t. $\phi(g) = x$ [Why?] and $y = \phi(h)$ for some $h \in H_1$.

$$xyx^{-1} = \cdots = \phi(ghg^{-1}) \in \phi(H_1)$$
 [Why?]

iii) Note that $\phi^{-1}(H_2) := \{ a \in G_1 \mid \phi(a) \in H_2 \}$. Nonempty: $e_1 \in \phi^{-1}(H_2)$.

For any $a, b \in \phi^{-1}(H_2), ab^{-1} \in \phi^{-1}(H_2)$ since $\phi(ab^{-1}) \in H_2$ [Why?].

iv) Let $g \in G_1$ and $h \in \phi^{-1}(H_2)$. To show $ghg^{-1} \in \phi^{-1}(H_2)$.

This is true since $\phi(ghg^{-1}) = \cdots = \phi(g)\phi(h)(\phi(g))^{-1} \in H_2$ [Why?].

Shaoyun Yi Homomorphisms Summer 2021 12 / 16

Equivalence Relation on G_1 Associated with $\phi \colon G_1 \to G_2$

Natural equivalent relation on G_1 : For $a, b \in G_1$, $a \sim_{\phi} b$ if $\phi(a) = \phi(b)$, and write $[a]_{\phi}$ as the equivalence class of $a \in G_1$. Set $G_1/\phi := \{[a]_{\phi}\}$.

The multiplication of equivalence classes in the set G_1/ϕ is well-defined, and G_1/ϕ is a group under this multiplication. The natural projection

$$\pi\colon G_1\to G_1/\phi$$

defined by $\pi(a) = [a]_{\phi}$ is a group homomorphism.

Proof: Multiplication is well-defined: to show $ac \sim_{\phi} bd$ if $a \sim_{\phi} b$, $c \sim_{\phi} d$. $\phi(ac) = \phi(a)\phi(c) \stackrel{!}{=} \phi(b)\phi(d) = \phi(bd)$. $\leadsto ac \sim_{\phi} bd$ Associativity: For all $a,b,c \in G_1$, $[a]_{\phi}([b]_{\phi}[c]_{\phi}) = \cdots = ([a]_{\phi}[b]_{\phi})[c]_{\phi}$. Identity $[e]_{\phi} : [e]_{\phi}[a]_{\phi} = [ea]_{\phi} = [a]_{\phi}$ & $[a]_{\phi}[e]_{\phi} = [ae]_{\phi} = [a]_{\phi}$ Inverses $[a^{-1}]_{\phi} : [a^{-1}]_{\phi}[a]_{\phi} = [a^{-1}a]_{\phi} = [e]_{\phi}$ & $[a]_{\phi}[a^{-1}]_{\phi} = [aa^{-1}]_{\phi} = [e]_{\phi}$ Thus, G_1/ϕ is a group under the multiplication of equivalence classes.

 π is a homomorphism: For all $a, b \in G_1$, $\pi(ab) = \cdots = \pi(a)\pi(b)$.

Shaoyun Yi Homomorphisms Summer 2021 13 / 16

An Important Theorem

The set of equivalence classes
$$G_1/\phi=\{[a]_\phi\}$$
, $[a]_\phi=\{b\in G_1\mid \phi(b)=\phi(a)\}$.

We know $\pi\colon G_1 o G_1/\phi$ defined by $\pi(a)=[a]_\phi$ is a group homomorphism.

Theorem

Let $\phi: G_1 \to G_2$ be a homomorphism. There exists a group **isomorphism** $\overline{\phi}: G_1/\phi \to \phi(G_1)$ defined by $\overline{\phi}([a]_\phi) = \phi(a)$ for all $[a]_\phi \in G_1/\phi$.

$$G_1 \stackrel{\pi}{\to} G_1/\phi \stackrel{\phi}{\to} \phi(G_1) \stackrel{\iota}{\to} G_2$$
 gives $\phi = \iota \circ \overline{\phi} \circ \pi$, ι is the inclusion mapping **Proof:** well-defined: If $[a]_{\phi} = [b]_{\phi}$, then $\overline{\phi}([a]_{\phi}) = \phi(a) = \overline{\phi}([b]_{\phi})$.

one-to-one: If $\overline{\phi}([a]_{\phi}) = \overline{\phi}([b]_{\phi})$, then $\phi(a) = \phi(b)$. Thus $[a]_{\phi} = [b]_{\phi}$.

onto:
$$\operatorname{im}(\overline{\phi}) = {\overline{\phi}([a]_{\phi}) \mid a \in G_1} = {\phi(a) \mid a \in G_1} = \operatorname{im}(\phi) = \phi(G_1)$$

$$\overline{\phi}$$
 is a group homomorphism: For any $[a]_{\phi}$, $[b]_{\phi} \in G_1/\phi$,

$$\overline{\phi}([\mathsf{a}]_\phi[b]_\phi) = \overline{\phi}([\mathsf{a}b]_\phi) = \phi(\mathsf{a}b) = \phi(\mathsf{a})\phi(b) = \overline{\phi}([\mathsf{a}]_\phi)\overline{\phi}([b]_\phi).$$

Looking ahead: Fundamental Homomorphism Theorem $G_1/\ker(\phi) \cong \operatorname{im}(\phi)$

Shaoyun Yi Homomorphisms Summer 2021 14 / 16

Fundamental Homomorphism Theorem

Let $\phi: G_1 \to G_2$ be a homomorphism, and $a, b \in G_1$. TFAE:

- (1) $\phi(a) = \phi(b)$, i.e., $a \sim_{\phi} b$, i.e., $[a]_{\phi} = [b]_{\phi}$;
- (2) $ab^{-1} \in \ker(\phi)$;
- (3) a = kb for some $k \in \ker(\phi)$;
- (4) $b^{-1}a \in \ker(\phi)$;
- (5) a = bk for some $k \in \ker(\phi)$;

Proof: (1) \Rightarrow (2) $\phi(ab^{-1}) = \cdots = e_2 \leadsto ab^{-1} \in \ker(\phi)$.

$$(2) \Rightarrow (3) \ ab^{-1} = k \in \ker(\phi) \rightsquigarrow a = kb. \ (3) \Rightarrow (1) \ \phi(a) = \cdots = \phi(b).$$

Similarly, we can show that $(1) \Rightarrow (4) \Rightarrow (5) \Rightarrow (1)$.

In proof of Lagrange's theorem: Let H be a subgroup of the group G.

For $a, b \in G$ define $a \sim b$ if $ab^{-1} \in H$. Then \sim is an equivalence relation.

 \longrightarrow Let $H = \ker(\phi)$. Write $G/\ker(\phi)$ for G/ϕ . So $G_1/\phi \cong \phi(G_1)$ becomes

Fundamental Homomorphism Theorem $G_1/\ker(\phi) \cong \phi(G_1) = \operatorname{im}(\phi)$

Application: Characterization of Cyclic Groups

2nd Theorem in §3.5

Every cyclic group G is isomorphic to either \mathbf{Z} or \mathbf{Z}_n for some $n \in \mathbf{Z}^+$.

Use Fundamental Homomorphism Theorem $G_1/\ker(\phi) \cong \operatorname{im}(\phi)$):

Given $G = \langle a \rangle$, define $\phi : \mathbf{Z} \to G$ by $\phi(m) = a^m$. By Example 3, ϕ is onto.

- If $o(a) = \infty$, then ϕ is one-to-one. So the equivalence classes of the factor set \mathbf{Z}/ϕ are just the subsets of \mathbf{Z} consisting of single elements, and thus \mathbf{Z} itself. Thus $\mathbf{Z}/\ker(\phi) = \mathbf{Z}/\phi = \mathbf{Z} \cong \mathrm{im}(\phi) = G$.
- If $o(a) = n < \infty$, then $a^m = a^k \Leftrightarrow m \equiv k \pmod{n}$, i.e., $\phi(m) = \phi(k)$ if and only if $m \equiv k \pmod{n}$. This implies that $\mathbf{Z}/\ker(\phi) = \mathbf{Z}/\phi$ is the additive group of congruence classes modulo n. Thus $\mathbf{Z}_n \cong G$.

e.g., Define $\phi: \mathbf{Z} \to \mathbf{Z}_n$ by $\phi(x) = [x]_n$. So ϕ is an onto homomorphism. $\rightsquigarrow \ker(\phi) = n\mathbf{Z}$. By Fundamental Homomorphism Theorem, $\mathbf{Z}/n\mathbf{Z} \cong \mathbf{Z}_n$.

We just use $G_1/\ker(\phi)$ to replace G_1/ϕ without its formal definition right now. Looking ahead: We will give a formal proof of $G_1/\ker(\phi) \cong \operatorname{im}(\phi)$ in §3.8.