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Review for §3.5
Every subgroup of a cyclic group G is cyclic.

Let G be a cyclic group.

{
i) If G is infinite, then G ∼= Z.

ii) If |G | = n <∞, then G ∼= Zn.

i) Any two infinite cyclic groups are isomorphic to each other.
ii) Two finite cyclic groups are isomorphic ⇔ they have the same order.

Subgroups of Z : For any 0 6= m ∈ Z, 〈m〉 = mZ ∼= Z = 〈1〉 = 〈−1〉.
Subgroups of Z : • mZ ⊆ nZ⇔ n|m • mZ = nZ⇔ m = ±n
Subgroups of Zn : For any d |n, dZn = 〈[d ]〉  subgroup diagram

i) d = (k , n) : 〈[k]〉 = 〈[d ]〉 & |〈[k]〉| = |〈[d ]〉| = n/d .
ii) Zn = 〈[k]〉 ⇔ [k] ∈ Z×n ⇔ (k , n) = 1.
iii) If d1|n and d2|n, then 〈[d1]〉 ⊆ 〈[d2]〉 ⇔ d2|d1.

iii)′ If d1|n and d2|n and d1 6= d2, then 〈[d1]〉 6= 〈[d2]〉.

Zn
∼= Zp

α1
1
× Zp

α2
2
× · · · × Zpαm

m
 Euler’s totient function ϕ(n)

Let G be a finite abelian group. Let N be the exponent of G .

N = max{o(a) : a ∈ G}. In particular, G is cyclic ⇔ N = |G |.
For small n, check Z×

n cyclic or not without using primitive root thm.
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Review for §2.3

A permutation σ : S → S is one-to-one and onto. Write σ ∈ Sym(S)

Sym(S) is a group under ◦. Sn is the symmetric group of degree n.

|Sn| = n!

Cycle of length k : σ = (a1a2 · · · ak) has order k.

Disjoint cycles are commutative.

σ ∈ Sn can be written as a unique product of disjoint cycles.

The order of σ is the lcm of the orders of its disjoint cycles.

A transposition is a cycle (a1a2) of length two.

σ ∈ Sn can be written as a product of transpositions. (NOT unique)

Even permutation & Odd permutation

A cycle of odd length is even. & A cycle of even length is odd.
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Cayley’s Theorem

Any subgroup of the symmetric group Sym(S) is called a permutation group.

Every group G is isomorphic to a permutation group.

Proof: Given a ∈ G , define λa : G → G by λa(x) = ax . To show λa ∈ Sym(G ).

λa is one-to-one: If λa(x1) = λa(x2), then x1 = x2. [Why?]
λa is onto: For any x ∈ G , we have λa(a−1x) = a(a−1x) = x . �

This implies that φ : G → Sym(G ) defined by φ(a) = λa is well-defined.

To show Gλ := φ(G ) is a subgroup of Sym(G ).

i) Closure: For any λa, λb ∈ Gλ with a, b ∈ G , to show λaλb ∈ Gλ.

λaλb(x) = λa(λb(x)) = λa(bx) = a(bx) = (ab)x = λab(x) for all x ∈ G .

ii) Identity λe : λaλe = λae = λa & λeλa = λea = λa.
iii) Inverses λa−1 : λaλa−1 = λe & λa−1λa = λe . �

Define φ : G → Gλ by φ(a) = λa (well-def., onto). To show φ is an isomorphism.

1) For all x ∈ G , φ(a) = φ(b) λa(x) = λb(x) ax = bx  a = b.
2) For any a, b ∈ G , we have φ(ab) = λab = λaλb = φ(a)φ(b). �
Thus G ∼= Gλ, where Gλ is a permutation group. [Why?] �
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Example: Rigid Motions of a Square

A rigid motion is a change in position where the distance between points
is preserved and figures remain congruent (having the same size and shape)

• Translation (slide) • Reflection (flip) • Rotation (turn) • A combination of these

Each rigid motion determines a permutation of the vertices of the square.
There are a total of eight rigid motions of a square. [Why?] (4 · 2 = 8)

(1234) counterclockwise rotation through 90◦

(13)(24) counterclockwise rotation through 180◦

(1432) counterclockwise rotation through 270◦

(1) counterclockwise rotation through 360◦

(24) flip about vertical axis

(13) flip about horizontal axis

(12)(34) flip about diagonal

(14)(23) flip about diagonal

We do not obtain all (4! = 24) elements of S4 as rigid motions. e.g., (12)
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Example: Rigid Motions of an Equilateral Triangle

The rigid motions of an equilateral triangle yield the group S3.

(123) counterclockwise rotation through 120◦

(132) counterclockwise rotation through 240◦

(1) counterclockwise rotation through 360◦

(23) flip about vertical axis

(13) flip about angle bisector

(12) flip about angle bisector

Recall: Another notion for describing S3 in §3.3
S3 = {e, a, a2, b, ab, a2b}, where a3 = e, b2 = e, ba = a2b = a−1b.

Another notion for describing Rigid Motions of a Square

Let a = (1234) and b = (24). It can be shown that ba = a3b.

S = {e, a, a2, a3, b, ab, a2b, a3b}, where a4 = e, b2 = e, ba = a3b = a−1b.
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Rigid Motions of a Regular Polygon (n-gon)

There are 2n rigid motions of a regular n-gon.

Proof: There are n choices of a position in which to place first vertex A,
and then two choices for second vertex since it must be adjacent to A.

a is a counterclockwise rotation about the center through (360/n)◦

 a is the cycle (123 · · · n) of length n and has order n.

b is a flip about the line of symmetry through position number 1.

 b is the product of (2n)(3 n − 1) · · · and has order 2.

Consider the set S = {ak , akb | 0 ≤ k < n} of rigid motions with |S | = 2n.

ak for 0 ≤ k < n are all distinct. [Why?]
akb for 0 ≤ k < n are all distinct.
ak 6= ajb for all 0 ≤ k , j < n since ak does not flip the n-gon.

S = {ak , akb | 0 ≤ k < n}, where an = e, b2 = e, ba = a−1b.

To show ba = a−1b! bab = a−1

a−1: clockwise rotation through (360/n)◦

Shaoyun Yi Permutation Groups Summer 2021 7 / 14



S.
Y
i-H

W
7

Dihedral Group Dn (n ≥ 3)

Let n ≥3 be an integer. The group of rigid motions of a regular n-gon is
called the nth dihedral group, denoted by Dn. Note that |Dn| = 2n.

Dn = {ak , akb | 0 ≤ k < n}, where an = e, b2 = e, ba = a−1b.

• We will not list all subgroups of Sn (n ≥ 4) since there are too many.

• The “simple” subgroups of Sn: cyclic subgroup generated by σ ∈ Sn.

• The dihedral group Dn is one important example of subgroups of Sn.

• The alternating group An is another one important example. (soon!)

Every proper subgroup of D3 = S3 is cyclic. [Why?] Its subgroup diagram
S3

{e, a2b}{e, ab}{e, b} {e, a, a2}

{e}
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Subgroups of D4

D4 = {e, a, a2, a3, b, ab, a2b, a3b}, where a4 = e, b2 = e, ba = a−1b = a3b.

The possible orders of proper subgroups of D4 are 1, 2, or 4. [Why?]

I. Two special subgroups: {e} (trivial subgroup) & D4 (non-cyclic)
II. The cyclic subgroups:

i) a4 = e : 〈a〉 = 〈a3〉 = {e, a, a2, a3} & 〈a2〉 = {e, a2} (Note that 2|4.)
ii) Each of the elements b, ab, a2b, a3b has order 2. (Check it!)

III. Q: Are there proper subgroups of D4 that are not cyclic? A: Yes.

If H is a non-cyclic proper subgroup, then H ∼= Z2 × Z2.

Proof: |H| = 4 and any non-identity element of H has order 2.

Say H = {e, x , y , xy}, and so yx = xy since H is abelian.

Consider all possible pairs of elements of order 2 to find all such H’s.

1) H1 = {e, a2, b, a2b}: ba2 = · · · = a2b 3
2) H2 = {e, a2, ab, a3b}: (ab)a2 = · · · = a3b 3

Shaoyun Yi Permutation Groups Summer 2021 9 / 14



S.
Y
i-H

W
7

Subgroup Diagram of D4

D4

{e, a2, b, a2b} {e, a, a2, a3} {e, a2, ab, a3b}

{e, a2}{e, b} {e, a2b} {e, ab} {e, a3b}

{e}
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Alternating Group An (n ≥ 2)

The set of all even permutations of Sn is a subgroup of Sn.

Proof: (|Sn| <∞) Nonempty: (1) Closure: If σ and τ are even, so is τσ.

The set of all even permutations of Sn is called the alternating group An.

|An| =
|Sn|

2
=

n!

2
. This is the largest possible cardinality for a proper subgroup.

Proof: Let On be the set (not a subgroup) of odd permutations in Sn. So

Sn = An
⊔
On  |Sn| = |An|+ |On|.

i) For each odd permutation σ ∈ On, the permutation (12)σ is even.
If σ and τ are two distinct odd permutations, then (12)σ 6= (12)τ .
Thus, |An| ≥ |On|. [Why?]

ii) Similarly, we can show that |On| ≥ |An|.

iii) Therefore, |An| = |On| =
|Sn|

2
=

n!

2
.

e.g., S3 = {(1), (12), (13), (23), (123), (132)} A3 = {(1), (123), (132)}
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Example: List all the Elements of A4 with |A4| = 12.

The decomposition type of a permutation σ in Sn is the list of all the
cycle lengths involved in a decomposition of σ into disjoint cycles.

 Possible decomposition types of permutations of S4:

I. a single cycle of length 1, 2, 3 or 4
II. two disjoint cycles of length 2

 Only single cycles of length 1 or 3 and two disjoint cycles of length 2
could possibly be even. Note that the single cycle of length 1 is just (1).

i) single cycle of length 3: Choose any three of the numbers 1, 2, 3, 4:(4
3

)
= Four choices: 123, 124, 134, 234.

For each choice, there are two ways to make a cycle.

(123), (132), (124), (142), (134), (143), (234), (243).

ii) two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4:(4
2

)
= Six choices: 12, 13, 14, 23, 24, 34.

 Three different products of two disjoint transpositions. [Why?]

(12)(34), (13)(24), (14)(23).

 A4 = {(1), (123), (132), . . . , (234), (243), (12)(34), (13)(24), (14)(23)}
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The Converse of Lagrange’s Theorem is False

Recall that A4 = {(1), (123), (132), . . . , (234), (243), (12)(34), (13)(24), (14)(23)}
In particular, every non-identity element of A4 has order 2 or 3. [Why?]

A4 has no subgroup of order 6.

Proof by contradiction: Suppose that H is a subgroup of order 6 in A4.

H must contain an element of order 2.

Proof: If not, {h, h−1} ∈ H with h 6= h−1 for any h 6= e & {e, e−1} = {e}.
 H has an odd number of elements, which is impossible.

H must contain an element of order 3.

Proof: If not, assume that every non-identity element of H has order 2.

Let x , y ∈ H with x 6= y and o(x) = o(y) = 2. So o(xy) = 2 since xy ∈ H
and xy 6= e [Why?]. And then xy = yx since xy = (xy)−1 = y−1x−1 = yx .

 {e, x , y , xy} is a subgroup of H of order 4, a contradiction. [Why?]

 H must contain an element (abc) and (ab)(cd) for distinct a, b, c, d .

Then H contains (abc)(ab)(cd) = (acd) and (ab)(cd)(abc) = (bdc).

 H has six elements of order 3 since (acb), (adc), (bcd) ∈ H. [Why?] �
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Two Examples

A4 6∼= S3 × Z2

Proof: A4 has no subgroup of order 6, but S3×Z2 does (e.g., S3×{[0]2})

S4 6∼= A4 × Z2

Proof: The largest possible order of an element in S4 is 4. [Why?]

Recall that the possible decomposition types of permutations of S4 are

I) a single cycle of length 1, 2, 3 or 4

II) two disjoint cycles of length 2

And so the possible decomposition types of permutations of A4 are

i) a single cycle of length 1 or 3

ii) two disjoint cycles of length 2

It follows that there is an element of order 6 in A4 × Z2. [Why?]

However, S4 has no element of order 6. Thus S4 6∼= A4 × Z2.
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