S.6 Permutation Groups

Shaoyun Yi

MATH 546/7011

University of South Carolina

Summer 2021

Shaoyun Yi

Permutation Groups

Shaoyun Yi

Permutation Groups

Summer 2021

Shaoyun Yi §3.6 Permutation Groups

Shaoyun Yi

MATH 546/701I

University of South Carolina

Summer 2021

Review for §3.5

- Every subgroup of a cyclic group G is cyclic.
- Let G be a cyclic group. $\begin{cases} i \end{cases}$ If G is infinite, then $G \cong \mathbb{Z}$. ii) If $|G| = n < \infty$, then $G \cong \mathbb{Z}_n$.
- i) Any two infinite cyclic groups are isomorphic to each other. ii) Two finite cyclic groups are isomorphic \Leftrightarrow they have the same order.
- \bullet Subgroups of Z : For any 0 \neq m ∈ Z, $\langle m \rangle = mZ \cong Z = \langle 1 \rangle = \langle -1 \rangle$. • $mZ \subseteq nZ \Leftrightarrow n|m$ • $mZ = nZ \Leftrightarrow m = \pm n$
- Review for §3.5

 Every subgroup of a cyclic group G is cyclic.

 Let G be a cyclic group. $\begin{cases} i$ i if G is infinite, then $G \cong Z$.

 Let G be a cyclic group. $\begin{cases} i$ i if $|G| = n < \infty$, then $G \cong Z_n$.

 i) Any t • Subgroups of \mathbb{Z}_n : For any $d|n, d\mathbb{Z}_n = \langle [d] \rangle \leadsto$ subgroup diagram i) $d = (k, n)$: $\langle [k] \rangle = \langle [d] \rangle \& \langle [k] \rangle = |\langle [d] \rangle| = n/d.$ ii) $\mathsf{Z}_n = \langle [k] \rangle \Leftrightarrow [k] \in \mathsf{Z}_n^{\times} \Leftrightarrow (k, n) = 1.$ iii) If $d_1|n$ and $d_2|n$, then $\langle [d_1]\rangle \subseteq \langle [d_2]\rangle \Leftrightarrow d_2|d_1$. δ iii) $'$ If $d_1|n$ and $d_2|n$ and $d_1\neq d_2$, then $\langle [d_1]\rangle\neq \langle [d_2]\rangle.$
	- $\mathsf{Z}_n\cong\mathsf{Z}_{\rho^{\alpha_1}_1}\times\mathsf{Z}_{\rho^{\alpha_2}_2}\times\cdots\times\mathsf{Z}_{\rho^{\alpha_m}_m}\rightsquigarrow \mathsf{Euler's \; totient \; function}\; \varphi(n)$
	- \bullet Let G be a finite abelian group. Let N be the exponent of G. $N = \max\{o(a): a \in G\}$. In particular, G is cyclic $\Leftrightarrow N = |G|$.
	- For small *n*, check Z_n^{\times} cyclic or not without using *primitive root thm*. Shaoyun Yi Ning The Summer 2021 2 / 14

Review for §2.3

- A permutation $\sigma: S \to S$ is one-to-one and onto. Write $\sigma \in \text{Sym}(S)$
- Review for §2.3

 A permutation $\sigma: S \rightarrow S$ is one-to-one and onto. Write $\sigma \in \text{Sym}(S)$

 Sym(S) is a group under \circ . S_n is the **symmetric group** of degree *n*.

 $|S_n| = n!$

 Cycle of length $k: \sigma = (a_1 a_2 \cdots a_k)$ has • Sym(S) is a group under \circ . S_n is the symmetric group of degree *n*.
	- $|S_n| = n!$
	- Cycle of length $k: \sigma = (a_1 a_2 \cdots a_k)$ has order k.
	- Disjoint cycles are commutative.
	- $\bullet \sigma \in S_n$ can be written as a *unique* product of disjoint cycles.
	- The order of σ is the **lcm** of the orders of its disjoint cycles.
	- A transposition is a cycle (a_1a_2) of length two.
	- $\sigma \sigma \in S_n$ can be written as a product of transpositions. (NOT unique)
	- **Even permutation & Odd permutation**
	- A cycle of odd length is even. & A cycle of even length is odd.

Cayley's Theorem

Any subgroup of the symmetric group $Sym(S)$ is called a **permutation group**.

Every group G is isomorphic to a permutation group.

Proof: Given $a \in G$, define $\lambda_a : G \to G$ by $\lambda_a(x) = ax$. To show $\lambda_a \in \text{Sym}(G)$.

- λ_a is one-to-one: If $\lambda_a(x_1) = \lambda_a(x_2)$, then $x_1 = x_2$. [Why?]
- λ_a is onto: For any $x \in G$, we have $\lambda_a(a^{-1}x) = a(a^{-1}x) = x$.

This implies that $\phi : G \to \text{Sym}(G)$ defined by $\phi(a) = \lambda_a$ is well-defined.

To show $G_{\lambda} := \phi(G)$ is a subgroup of $Sym(G)$.

Cayley's Theorem

Any subgroup of the symmetric group Sym(S) is called a **permutation group.**
 Every group G is isomorphic to a permutation group.
 Proof: Given $a \in G$, define $\lambda_3 : G \to G$ by $\lambda_3(x) = ax$. To show $\lambda_3 \$ i) Closure: For any $\lambda_a, \lambda_b \in G_\lambda$ with $a, b \in G$, to show $\lambda_a \lambda_b \in G_\lambda$. $\lambda_a \lambda_b(x) = \lambda_a(\lambda_b(x)) = \lambda_a(bx) = a(bx) = (ab)x = \lambda_{ab}(x)$ for all $x \in G$. ii) Identity λ_e : $\lambda_a \lambda_e = \lambda_{ae} = \lambda_a$ & $\lambda_a \lambda_a = \lambda_{ea} = \lambda_a$. iii) Inverses λ_{a-1} : $\lambda_a \lambda_{a-1} = \lambda_e$ & $\lambda_{a-1} \lambda_a = \lambda_e$. Define $\phi: G \to G_\lambda$ by $\phi(a) = \lambda_a$ (well-def., onto). To show ϕ is an isomorphism. 1) For all $x \in G$, $\phi(a) = \phi(b) \leadsto \lambda_a(x) = \lambda_b(x) \leadsto ax = bx \leadsto a = b$. 2) For any $a, b \in G$, we have $\phi(ab) = \lambda_{ab} = \lambda_a \lambda_b = \phi(a)\phi(b)$. Thus $G \cong G_{\lambda}$, where G_{λ} is a permutation group. [Why?] Shaoyun Yi **Permutation Groups** Summer 2021 4 / 14

Example: Rigid Motions of a Square

A rigid motion is a change in position where the distance between points is preserved and figures remain congruent (having the same size and shape) • Translation (slide) • Reflection (flip) • Rotation (turn) • A combination of these

Each rigid motion determines a permutation of the vertices of the square. There are a total of eight rigid motions of a square. [Why?] $(4 \cdot 2 = 8)$

Example: Rigid Motions of a Square

A rigid motion is a change in position where the distance between points

is preserved and figures remain congruent (having the same size and shape)

• Translation (slide) • Reflection (1234) counterclockwise rotation through 90° $(13)(24)$ counterclockwise rotation through 180 $^{\circ}$ (1432) counterclockwise rotation through 270 \textdegree (1) counterclockwise rotation through 360 \degree (24) flip about vertical axis (13) flip about horizontal axis $(12)(34)$ flip about diagonal $(14)(23)$ flip about diagonal

We do not obtain all $(4! = 24)$ elements of S_4 as rigid motions. e.g., (12)

Example: Rigid Motions of an Equilateral Triangle

The rigid motions of an equilateral triangle yield the group S_3 .

(123) counterclockwise rotation through 120°

- (132) counterclockwise rotation through 240°
	- (1) counterclockwise rotation through 360 \degree
	- (23) flip about vertical axis
	- (13) flip about angle bisector
	- (12) flip about angle bisector

Recall: Another notion for describing S_3 in §3.3

 $S_3 = \{e, a, a^2, b, ab, a^2b\}, \text{ where } a^3 = e, b^2 = e, ba = a^2b = a^{-1}b.$

Another notion for describing Rigid Motions of a Square

Let $a = (1234)$ and $b = (24)$. It can be shown that $ba = a^3b$.

 $S = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$, where $a^4 = e, b^2 = e, ba = a^3b = a^{-1}b$.

Rigid Motions of a Regular Polygon (n-gon)

There are $2n$ rigid motions of a regular n -gon.

Proof: There are *n* choices of a position in which to place first vertex A, and then two choices for second vertex since it must be adjacent to A.

a is a counterclockwise rotation about the center through $(360/n)^\circ$

 \rightsquigarrow a is the cycle $(123 \cdots n)$ of length n and has order n.

 b is a flip about the line of symmetry through position number 1.

 $\rightarrow b$ is the product of $(2n)(3n-1)\cdots$ and has order 2.

Consider the set $S = \{a^k, a^k b \mid 0 \le k < n\}$ of rigid motions with $|S| = 2n$.

- a^k for $0 \leq k < n$ are all distinct. [Why?]
- a^kb for $0\leq k< n$ are all distinct.

 $a^k \neq a^j b$ for all $0 \leq k, j < n$ since a^k does not flip the n-gon.

$$
S = \{a^k, a^k b \mid 0 \le k < n\}, \quad \text{where } a^n = e, \ b^2 = e, \ ba = a^{-1}b.
$$

Rigid Motions of a Regular Polygon (*n*-gon)

There are 2*n* rigid motions of a regular *n*-gon.
 Proof: There are *n* choices of a position in which to place first vertex *A*,

and then two choices for second vertex si To show $ba = a^{-1}b \leftrightarrow bab = a^{-1}b$ a^{-1} : clockwise rotation through $(360/n)^\circ$ Shaoyun Yi **Shaoyun Yi** Permutation Groups Summer 2021

Dihedral Group D_n ($n \geq 3$)

Let $n > 3$ be an integer. The group of rigid motions of a regular *n*-gon is called the *n*th **dihedral group**, denoted by D_n . Note that $|D_n| = 2n$. $D_n = \{a^k, a^k b \mid 0 \le k < n\}, \text{ where } a^n = e, b^2 = e, ba = a^{-1}b.$

- We will not list all subgroups of S_n ($n \geq 4$) since there are too many.
- The "simple" subgroups of S_n : cyclic subgroup generated by $\sigma \in S_n$.
- The dihedral group D_n is one important example of subgroups of S_n .
- The alternating group A_n is another one important example. (soon!)

Every proper subgroup of $D_3 = S_3$ is cyclic. [Why?] Its subgroup diagram

Subgroups of D_4

$$
D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}
$$
, where $a^4 = e$, $b^2 = e$, $ba = a^{-1}b = a^3b$.

The possible orders of proper subgroups of D_4 are 1, 2, or 4. [Why?]

- I. Two special subgroups: $\{e\}$ (trivial subgroup) & D_4 (non-cyclic)
- II. The cyclic subgroups:
	- i) $a^4 = e$: $\langle a \rangle = \langle a^3 \rangle = \{e, a, a^2, a^3\}$ & $\langle a^2 \rangle = \{e, a^2\}$ (Note that 2|4.) ii) Each of the elements b, ab, a^2b , a^3b has order 2. (Check it!)
- III. **Q:** Are there proper subgroups of D_4 that are not cyclic? **A:** Yes.

If H is a non-cyclic proper subgroup, then $H \cong Z_2 \times Z_2$.

Proof: $|H| = 4$ and any non-identity element of H has order 2.

Say $H = \{e, x, y, xy\}$, and so $yx = xy$ since H is abelian.

Subgroups of D_4
 $D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$, where $a^4 = e$, $b^2 = e$, $ba = a^{-1}b = a^3b$.

The possible orders of proper subgroups of D_4 are 1, 2, or 4. [Why?]

1. Two special subgroups: $\{e\}$ (trivial subgrou Consider all possible pairs of elements of order 2 to find all such H's. 1) $H_1 = \{e, a^2, b, a^2b\}$: $ba^2 = \cdots = a^2b$ \checkmark 2) $H_2 = \{e, a^2, ab, a^3b\}$: $(ab)a^2 = \cdots = a^3b$ \checkmark

Subgroup Diagram of D⁴

Alternating Group A_n ($n \geq 2$)

The set of all even permutations of S_n is a subgroup of S_n .

Alternating Group A_n $(n \ge 2)$

The set of all even permutations of S_n is a subgroup of S_n .
 Proof: $(|S_n| < \infty)$ Nonempty: (1) Closure: If σ and τ are even, so is $\tau \sigma$.

The set of all even permutations of **Proof:** $(|S_n| < \infty)$ Nonempty: (1) Closure: If σ and τ are even, so is $\tau\sigma$. The set of all even permutations of S_n is called the **alternating group** A_n . $|A_n| = \frac{|S_n|}{2}$ $\frac{|S_n|}{2} = \frac{n!}{2}$ $\frac{1}{2}$. This is the largest possible cardinality for a proper subgroup.

Proof: Let O_n be the set (not a subgroup) of odd permutations in S_n . So $S_n = A_n \bigsqcup O_n \quad \leadsto |S_n| = |A_n| + |O_n|.$

- i) For each odd permutation $\sigma \in O_n$, the permutation $(12)\sigma$ is even. If σ and τ are two distinct odd permutations, then $(12)\sigma \neq (12)\tau$. Thus, $|A_n| > |O_n|$. [Why?]
- ii) Similarly, we can show that $|O_n| \geq |A_n|$.

iii) Therefore,
$$
|A_n| = |O_n| = \frac{|S_n|}{2} = \frac{n!}{2}
$$
.

e.g., $S_3 = \{(1), (12), (13), (23), (123), (132)\} \rightsquigarrow A_3 = \{(1), (123), (132)\}$

Example: List all the Elements of A_4 with $|A_4| = 12$.

The **decomposition type** of a permutation σ in S_n is the list of all the cycle lengths involved in a decomposition of σ into disjoint cycles.

 \rightsquigarrow Possible decomposition types of permutations of S_4 :

I. a single cycle of length 1, 2, 3 or 4

II. two disjoint cycles of length 2

Example: List all the Elements of A_4 with $|A_4| = 12$.

The decomposition type of a permutation σ in S_n is the list of all the

cycle lengths involved in a decomposition of σ into disjoint cycles.
 \sim Possibl \rightsquigarrow Only single cycles of length 1 or 3 and two disjoint cycles of length 2 could possibly be even. Note that the single cycle of length 1 is just (1) . i) single cycle of length 3: Choose any three of the numbers 1, 2, 3, 4: $\binom{4}{3}$ $\binom{4}{3}$ = Four choices: 123, 124, 134, 234. For each choice, there are two ways to make a cycle. (123), (132), (124), (142), (134), (143), (234), (243). ii) two disjoint cycles of length 2: Choose any two of the $\#s$ 1, 2, 3, 4: $\binom{4}{2}$ $\binom{4}{2}$ = Six choices: 12, 13, 14, 23, 24, 34. \rightarrow Three different products of two disjoint transpositions. [Why?] $(12)(34),$ $(13)(24),$ $(14)(23).$ \rightarrow $A_4 = \{(1), (123), (132), \ldots, (234), (243), (12)(34), (13)(24), (14)(23)\}$

The Converse of Lagrange's Theorem is False

Recall that $A_4 = \{(1), (123), (132), \ldots, (234), (243), (12)(34), (13)(24), (14)(23)\}$ In particular, every non-identity element of A_4 has order 2 or 3. [Why?]

A_4 has no subgroup of order 6.

Proof by contradiction: Suppose that H is a subgroup of order 6 in A_4 .

H must contain an element of order 2.

Proof: If not, $\{h,h^{-1}\}\in H$ with $h\neq h^{-1}$ for any $h\neq e$ & $\{e,e^{-1}\}=\{e\}.$ \rightarrow H has an odd number of elements, which is impossible.

H must contain an element of order 3.

The Converse of Lagrange's Theorem is False

Recall that $A_4 = \{(1), (123), (132), ..., (234), (243), (12)(34), (13)(24), (14)(23)\}$

In particular, every non-identity element of A_4 has order 2 or 3. [Why?]
 Proof by contradiction: Suppos Proof: If not, assume that every non-identity element of H has order 2. Let x, y \in H with $x \neq y$ and $o(x) = o(y) = 2$. So $o(xy) = 2$ since $xy \in H$ and $xy \neq e$ [Why?]. And then $xy = yx$ since $xy = (xy)^{-1} = y^{-1}x^{-1} = yx$. \rightarrow {e, x, y, xy} is a subgroup of H of order 4, a contradiction. [Why?] \Box \rightarrow H must contain an element (abc) and (ab)(cd) for distinct a, b, c, d. Then H contains $(abc)(ab)(cd) = (acd)$ and $(ab)(cd)(abc) = (bdc)$. \rightarrow H has six elements of order 3 since (acb), (adc), (bcd) \in H. [Why?] \Box Shaoyun Yi **Permutation Groups Summer 2021** 13 / 14

$$
A_4\not\cong S_3\times \textbf{Z}_2
$$

Two Examples
 $A_4 \not\cong S_3 \times Z_2$
 Proof: A_4 has no subgroup of order 6, but $S_3 \times Z_2$ does (e.g., $S_3 \times \{[0]_2\}$)
 $S_4 \not\cong A_4 \times Z_2$
 Proof: The largest possible order of an element in S_4 is 4. [Why?]

Recal **Proof:** A_4 has no subgroup of order 6, but $S_3 \times Z_2$ does (e.g., $S_3 \times \{0\}_2\}$)

 $S_4 \not\cong A_4 \times \mathbf{Z}_2$

Proof: The largest possible order of an element in S_4 is 4. [Why?]

Recall that the possible decomposition types of permutations of S_4 are

- \vert) a single cycle of length 1, 2, 3 or 4
- II) two disjoint cycles of length 2

And so the possible decomposition types of permutations of A_4 are

- i) a single cycle of length 1 or 3
- ii) two disjoint cycles of length 2

It follows that there is an element of order 6 in $A_4 \times Z_2$. [Why?]

However, S_4 has no element of order 6. Thus $S_4 \not\cong A_4 \times \mathbb{Z}_2$.