§3.6 Permutation Groups

Shaoyun Yi

MATH 546/701I

University of South Carolina

Summer 2021

Review for $\S3.5$

- Every subgroup of a cyclic group G is cyclic.
- Let G be a cyclic group. $\begin{cases}
 i) If G is infinite, then G \cong Z, \\
 ii) If |G| = n < \infty, then G \cong Z_n.
 \end{cases}$
- i) Any two infinite cyclic groups are isomorphic to each other.
 ii) Two finite cyclic groups are isomorphic ⇔ they have the same order.
- Subgroups of Z : For any $0 \neq m \in Z$, $\langle m \rangle = mZ \cong Z = \langle 1 \rangle = \langle -1 \rangle$. • $mZ \subseteq nZ \Leftrightarrow n | m$ • $mZ = nZ \Leftrightarrow m = \pm n$
- Subgroups of Z_n: For any d|n, dZ_n = ⟨[d]⟩ → subgroup diagram
 i) d = (k, n): ⟨[k]⟩ = ⟨[d]⟩ & |⟨[k]⟩| = |⟨[d]⟩| = n/d.
 ii) Z_n = ⟨[k]⟩ ⇔ [k] ∈ Z_n[×] ⇔ (k, n) = 1.
 iii) If d₁|n and d₂|n, then ⟨[d₁]⟩ ⊆ ⟨[d₂]⟩ ⇔ d₂|d₁.
 - iii)' If $d_1|n$ and $d_2|n$ and $d_1 \neq d_2$, then $\langle [d_1] \rangle \neq \langle [d_2] \rangle$.
- Z_n ≃ Z_{p1}^{α1} × Z_{p2}^{α2} × ··· × Z_{pm}^{αm} → Euler's totient function φ(n)
 Let G be a *finite abelian* group. Let N be the **exponent** of G.

 $N = \max\{o(a) \colon a \in G\}$. In particular, G is cyclic $\Leftrightarrow N = |G|$.

• For small *n*, check \mathbf{Z}_n^{\times} cyclic or not without using *primitive root thm*.

Review for $\S2.3$

- A permutation $\sigma: S \to S$ is one-to-one and onto. Write $\sigma \in Sym(S)$
- Sym(S) is a group under \circ . S_n is the symmetric group of degree n.
- $|S_n| = n!$
- Cycle of length $k: \sigma = (a_1a_2\cdots a_k)$ has order k.
- Disjoint cycles are commutative.
- $\sigma \in S_n$ can be written as a *unique* product of disjoint cycles.
- The order of σ is the **Icm** of the orders of its disjoint cycles.
- A transposition is a cycle (a_1a_2) of length two.
- $\sigma \in S_n$ can be written as a product of transpositions. (NOT unique)
- Even permutation & Odd permutation
- A cycle of odd length is even. & A cycle of even length is odd.

Cayley's Theorem

Any subgroup of the symmetric group Sym(S) is called a **permutation group**.

Every group G is isomorphic to a permutation group.

Proof: Given $a \in G$, define $\lambda_a : G \to G$ by $\lambda_a(x) = ax$. To show $\lambda_a \in \text{Sym}(G)$.

- λ_a is one-to-one: If $\lambda_a(x_1) = \lambda_a(x_2)$, then $x_1 = x_2$. [Why?]
- λ_a is onto: For any $x \in G$, we have $\lambda_a(a^{-1}x) = a(a^{-1}x) = x$.

This implies that $\phi : G \to \text{Sym}(G)$ defined by $\phi(a) = \lambda_a$ is well-defined.

To show $G_{\lambda} := \phi(G)$ is a subgroup of Sym(G).

i) Closure: For any λ_a, λ_b ∈ G_λ with a, b ∈ G, to show λ_aλ_b ∈ G_λ. λ_aλ_b(x) = λ_a(λ_b(x)) = λ_a(bx) = a(bx) = (ab)x = λ_{ab}(x) for all x ∈ G.
ii) Identity λ_e: λ_aλ_e = λ_{ae} = λ_a & λ_eλ_a = λ_{ea} = λ_a.
iii) Inverses λ_{a-1}: λ_aλ_{a-1} = λ_e & λ_{a-1}λ_a = λ_e.
Define φ: G → G_λ by φ(a) = λ_a (well-def., onto). To show φ is an isomorphism.
1) For all x ∈ G, φ(a) = φ(b) ↔ λ_a(x) = λ_b(x) ↔ ax = bx ↔ a = b.
2) For any a, b ∈ G, we have φ(ab) = λ_{ab} = λ_aλ_b = φ(a)φ(b).
Thus G ≅ G_λ, where G_λ is a permutation group. [Why?]

Example: Rigid Motions of a Square

A rigid motion is a change in position where the distance between points is preserved and figures remain congruent (having the same size and shape)
Translation (slide) • Reflection (flip) • Rotation (turn) • A combination of these

Each rigid motion determines a permutation of the vertices of the square. There are a total of eight rigid motions of a square. [Why?] $(4 \cdot 2 = 8)$

(1234) counterclockwise rotation through 90° (13)(24) counterclockwise rotation through 180° (1432) counterclockwise rotation through 270° (1) counterclockwise rotation through 360° (24) flip about vertical axis (13) flip about horizontal axis (12)(34) flip about diagonal (14)(23) flip about diagonal

We do not obtain all (4! = 24) elements of S_4 as rigid motions. e.g., (12)

Shaoyun Yi

Example: Rigid Motions of an Equilateral Triangle

The rigid motions of an equilateral triangle yield the group S_3 .

(123) counterclockwise rotation through 120°

- (132) counterclockwise rotation through 240°
 - (1) counterclockwise rotation through 360°
 - (23) flip about vertical axis
 - (13) flip about angle bisector
 - (12) flip about angle bisector

Recall: Another notion for describing S_3 in §3.3

 $S_3 = \{e, a, a^2, b, ab, a^2b\}$, where $a^3 = e$, $b^2 = e$, $ba = a^2b = a^{-1}b$.

Another notion for describing Rigid Motions of a Square Let a = (1234) and b = (24). It can be shown that $ba = a^3b$.

 $S = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$, where $a^4 = e, b^2 = e, ba = a^3b = a^{-1}b$.

Rigid Motions of a Regular Polygon (*n*-gon)

There are 2n rigid motions of a regular *n*-gon.

Proof: There are *n* choices of a position in which to place first vertex A, and then two choices for second vertex since it must be adjacent to A.

a is a counterclockwise rotation about the center through $(360/n)^{\circ}$

 \boldsymbol{b} is a flip about the line of symmetry through position number 1.

 $\rightarrow b$ is the product of $(2n)(3n-1)\cdots$ and has order 2.

Consider the set $S = \{a^k, a^k b \mid 0 \le k < n\}$ of rigid motions with |S| = 2n.

- a^k for $0 \le k < n$ are all distinct. [Why?]
- $a^k b$ for $0 \le k < n$ are all distinct.

• $a^k \neq a^j b$ for all $0 \le k, j < n$ since a^k does not flip the *n*-gon.

 $S = \{a^k, a^k b \mid 0 \le k < n\},$ where $a^n = e, b^2 = e, ba = a^{-1}b.$

To show $ba = a^{-1}b \iff bab = a^{-1}$ a^{-1} : clockwise rotation through $(360/n)^{\circ}$ n = 1b = 1 a^{-1} : $a^{-1} = 1$ $b^{-1} = 1$ b^{-1

Dihedral Group D_n ($n \ge 3$)

Let $n \ge 3$ be an integer. The group of rigid motions of a regular *n*-gon is called the *n*th **dihedral group**, denoted by D_n . Note that $|D_n| = 2n$. $D_n = \{a^k, a^k b \mid 0 \le k < n\}$, where $a^n = e$, $b^2 = e$, $ba = a^{-1}b$.

- We will not list all subgroups of S_n $(n \ge 4)$ since there are too many.
- The "simple" subgroups of S_n : cyclic subgroup generated by $\sigma \in S_n$.
- The dihedral group D_n is one important example of subgroups of S_n .
- The alternating group A_n is another one important example. (soon!)

Every proper subgroup of $D_3 = S_3$ is cyclic. [Why?] Its subgroup diagram

Summer 2021 8 / 14

Subgroups of D_4

$$D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}, \text{ where } a^4 = e, \ b^2 = e, \ ba = a^{-1}b = a^3b.$$

The possible orders of proper subgroups of D_4 are 1, 2, or 4. [Why?]

- I. Two special subgroups: $\{e\}$ (trivial subgroup) & D_4 (non-cyclic)
- II. The cyclic subgroups:
 - i) $a^4 = e$: $\langle a \rangle = \langle a^3 \rangle = \{e, a, a^2, a^3\} \& \langle a^2 \rangle = \{e, a^2\}$ (Note that 2|4.) ii) Each of the elements *b*, *ab*, *a^2b*, *a^3b* has order 2. (Check it!)
- III. **Q**: Are there proper subgroups of D_4 that are **not** cyclic? **A**: Yes.

If *H* is a non-cyclic proper subgroup, then $H \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Proof: |H| = 4 and any non-identity element of H has order 2.

Say $H = \{e, x, y, xy\}$, and so yx = xy since H is abelian.

Consider all possible pairs of elements of order 2 to find all such *H*'s. 1) $H_1 = \{e, a^2, b, a^2b\}$: $ba^2 = \cdots = a^2b \checkmark$ 2) $H_2 = \{e, a^2, ab, a^3b\}$: $(ab)a^2 = \cdots = a^3b \checkmark$

Subgroup Diagram of D_4

Alternating Group A_n $(n \ge 2)$

The set of all even permutations of S_n is a subgroup of S_n .

Proof: $(|S_n| < \infty)$ Nonempty: (1) Closure: If σ and τ are even, so is $\tau\sigma$. The set of all even permutations of S_n is called the **alternating group** A_n . $|A_n| = \frac{|S_n|}{2} = \frac{n!}{2}$. This is the largest possible cardinality for a proper subgroup.

Proof: Let O_n be the set (not a subgroup) of odd permutations in S_n . So $S_n = A_n \bigsqcup O_n \quad \rightsquigarrow |S_n| = |A_n| + |O_n|.$

- i) For each odd permutation $\sigma \in O_n$, the permutation $(12)\sigma$ is even. If σ and τ are two distinct odd permutations, then $(12)\sigma \neq (12)\tau$. Thus, $|A_n| \geq |O_n|$. [Why?]
- ii) Similarly, we can show that $|O_n| \ge |A_n|$.

iii) Therefore,
$$|A_n| = |O_n| = \frac{|S_n|}{2} = \frac{n!}{2}$$
.

e.g., $S_3 = \{(1), (12), (13), (23), (123), (132)\} \rightsquigarrow A_3 = \{(1), (123), (132)\}$

Example: List all the Elements of A_4 with $|A_4| = 12$.

The **decomposition type** of a permutation σ in S_n is the list of all the cycle lengths involved in a decomposition of σ into disjoint cycles.

 \rightsquigarrow Possible decomposition types of permutations of S_4 :

I. a single cycle of length 1, 2, 3 or 4

II. two disjoint cycles of length 2

 \rightsquigarrow Only single cycles of length 1 or 3 and two disjoint cycles of length 2 could possibly be even. Note that the single cycle of length 1 is just (1). i) single cycle of length 3: Choose any three of the numbers 1, 2, 3, 4: $\binom{4}{3}$ = Four choices: 123, 124, 134, 234. For each choice, there are **two** ways to make a cycle. (123), (132), (124), (142), (134), (143), (234), (243).ii) two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4: $\binom{4}{2} =$ Six choices: 12, 13, 14, 23, 24, 34. \rightarrow **Three** different products of two disjoint transpositions. [Why?] (12)(34), (13)(24), (14)(23). $\rightsquigarrow A_4 = \{(1), (123), (132), \dots, (234), (243), (12)(34), (13)(24), (14)(23)\}$

The Converse of Lagrange's Theorem is False

Recall that $A_4 = \{(1), (123), (132), \dots, (234), (243), (12)(34), (13)(24), (14)(23)\}$ In particular, every non-identity element of A_4 has order 2 or 3. [Why?]

A_4 has no subgroup of order 6.

Proof by contradiction: Suppose that H is a subgroup of order 6 in A_4 .

H must contain an element of order 2.

Proof: If not, $\{h, h^{-1}\} \in H$ with $h \neq h^{-1}$ for any $h \neq e \& \{e, e^{-1}\} = \{e\}$. \rightarrow H has an odd number of elements, which is impossible.

H must contain an element of order 3.

Proof: If not, assume that every non-identity element of H has order 2. Let $x, y \in H$ with $x \neq y$ and o(x) = o(y) = 2. So o(xy) = 2 since $xy \in H$ and $xy \neq e$ [Why?]. And then xy = yx since $xy = (xy)^{-1} = y^{-1}x^{-1} = yx$. \rightarrow {*e*, *x*, *y*, *xy*} is a subgroup of *H* of order 4, a contradiction. [Why?] \rightarrow H must contain an element (*abc*) and (*ab*)(*cd*) for distinct *a*, *b*, *c*, *d*. Then H contains (abc)(ab)(cd) = (acd) and (ab)(cd)(abc) = (bdc). \rightarrow H has six elements of order 3 since $(acb), (adc), (bcd) \in H$. [Why?] Shaoyun Yi Summer 2021 13 / 14

$$A_4 \not\cong S_3 imes \mathbf{Z}_2$$

Proof: A_4 has no subgroup of order 6, but $S_3 \times \mathbb{Z}_2$ does (e.g., $S_3 \times \{[0]_2\}$)

 $S_4 \not\cong A_4 imes \mathbf{Z}_2$

Proof: The largest possible order of an element in S_4 is 4. [Why?]

Recall that the possible decomposition types of permutations of S_4 are

- I) a single cycle of length 1, 2, 3 or 4
- II) two disjoint cycles of length 2

And so the possible decomposition types of permutations of A_4 are

- i) a single cycle of length 1 or 3 $\,$
- ii) two disjoint cycles of length 2

It follows that there is an element of order 6 in $A_4 \times Z_2$. [Why?]

However, S_4 has no element of order 6. Thus $S_4 \ncong A_4 \times \mathbf{Z}_2$.