§3.4 Isomorphisms

Shaoyun Yi

MATH 546/701I

University of South Carolina

Summer 2021

Review

- Group: abelian v.s. nonabelian & finite v.s. infinite
- Subgroup
	- cyclic (\leadsto abelian): $|\langle a \rangle| = o(a)$; If $o(a) < \infty$, then $a^k = e \Leftrightarrow o(a)|k.$
	- **Lagrange's Theorem:** If $|G| = n < \infty$ and $H \subseteq G$, then $|H||n$.
		- \bullet o(a)|n for any $a \in G$.
		- Any group of prime order is cyclic.
- Constructing (sub)groups
	- $H \cap K$ is the largest subgroup contained in both H and K.
	- Product of two subgroups: HK is not always a subgroup of G .
		- If $h^{-1}kh \in K$ for all $h \in H$ and $k \in K$, then HK is a subgroup of G. And HK is the smallest subgroup containing both H and K .
		- $|HK| = |H||K|/|H \cap K|$ if G is a finite group.
	- Direct product: $G_1 \times G_2$ is a group under the operation $(*, \cdot)$.
		- $o\bigl((a_1,a_2)\bigr) = [o(a_1),o(a_2)]$
		- $|G_1 \times G_2| = |G_1| \cdot |G_2|$ if G_1, G_2 are finite groups.
		- \bullet **Z**_n × **Z**_m is cyclic \Leftrightarrow gcd(n, m) = 1.
	- Subgroup generated by $S: \langle S \rangle$ is the smallest subgroup that contains S.
	- Field F : New groups defined over F .

Examples: Group Table in G with $|G| = 2$ or 3

Consider the group tables of the subgroup $\{\pm 1\}$ of \mathbf{Q}^{\times} and the group \mathbf{Z}_2 .

Multiplication in $\{\pm 1\}$

$$
\begin{array}{c|cc}\n\times & 1 & -1 \\
\hline\n1 & 1 & -1 \\
-1 & -1 & 1\n\end{array}
$$

Addition in Z_2 $+ |0| 1]$ $\boxed{0}$ $\boxed{0}$ $\boxed{1}$ $[1] | [1] | 0]$

Group table in G with $|G| = 3$ ∗ e a b $e \, | \, e \, a \, b$ $a \mid a \mid b \mid e$ $b \mid b$ e a In fact, G is cyclic, i.e. $b = a^2$

All groups with order 2 (or 3) must have the same algebraic properties.

Let $(G_1, *)$ and (G_2, \cdot) be two groups, and let $\phi : G_1 \rightarrow G_2$ be a function. Then ϕ is said to be a **group isomorphism** if

- i) ϕ is one-to-one and onto, and
- ii) $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$.

In this case, G_1 is said to be **isomorphic** to G_2 , and we write $G_1 \cong G_2$.

To prove that two groups are **isomorphic**, you need to

- 1) define a function ϕ (well-defined), and then
- 2) verify that ϕ is a group isomorphism.

Sometimes your first guess for ϕ is might not work, so you might need to try several different functions until you find one satisfying the requirements

Properties of Group Isomorphisms

Let $(G_1, *)$ and (G_2, \cdot) be groups, and let $\phi : G_1 \to G_2$ be an isomorphism. Let e_1 and e_2 be the identity elements of G_1 and G_2 , respectively. Then i) $\phi(e_1) = e_2$. ii) $\phi(\mathsf{a}^{-1}) = \big(\phi(\mathsf{a})\big)^{-1}$ for all $\mathsf{a} \in \mathsf{G}_1.$ iii) $\phi(a^n) = (\phi(a))^n$ for all $a \in G_1$ and all $n \in \mathbf{Z}$. **Proof:** i) $\phi(e_1) \cdot \phi(e_1) = \phi(e_1 * e_1) = \phi(e_1) = \phi(e_1) \cdot e_2 \rightsquigarrow \phi(e_1) = e_2$ $\phi(\mathsf{a}^{-1})\cdot \phi(\mathsf{a}) = \phi(\mathsf{a}^{-1}*\mathsf{a}) = \phi(\mathsf{e}_1) \overset{\mathsf{i})}{=} \mathsf{e}_2 \leadsto \phi(\mathsf{a}^{-1}) = \big(\phi(\mathsf{a})\big)^{-1}$ iii) By induction, we have $\phi(a_1 * a_2 * \cdots * a_n) = \phi(a_1) \cdot \phi(a_2) \cdot \cdots \cdot \phi(a_n)$ for $a_1, a_2, \ldots, a_n \in G_1$. In particular, $\phi(a^n) = (\phi(a))^n$ for any positive integer n. Furthermore, $\phi(a^n) = (\phi(a))^n$ for all $n \in \mathbb{Z}$. For $n < 0, n = -|n| \leadsto \phi(a^n) = \phi((a^{-1})^{|n|}) = (\phi(a^{-1}))^{|n|} \stackrel{\text{i)}}{=} ((\phi(a))^{-1})^{|n|}.$

Any group isomorphism preserves general products, the identity and inverses.

Example

 $\phi: (G_1, *, e_1) \stackrel{\cong}{\longrightarrow} (G_2, \cdot, e_2) \begin{cases} \phi & \text{is one-to-one and onto, and} \\ \phi(a, *, b) = \phi(a), \phi(b) & \text{for all} \end{cases}$ $\phi(a \ast b) = \phi(a) \cdot \phi(b)$ for all $a,b \in G_1.$

 ϕ preserves general products, the identity element and inverses of elements.

To prove $G_1 \cong G_2$, you need to \begin{cases} define ϕ (well-defined), and then **verify** that ϕ is an isomorphism.

Prove that $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot).$

Proof: We need a function $\phi : \mathbf{R} \to \mathbf{R}^+$ that has the following properties:

- sends real numbers to positive real numbers
- **•** sends addition to multiplication
- sends the identity $e_1 = 0$ of $({\bm R}, +)$ to the identity $e_2 = 1$ of $({\bm R}^+, \cdot)$

Try $\phi(x)=e^x\,|\,{\mathsf{i}})\,\,\phi(x)=e^x>0$ for all $x\in{\sf R}$. That is, $\phi(x)\in{\sf R}^+.$ ii) ϕ is one-to-one $(e^{x_1}=e^{x_2}\leadsto x_1=x_2)$ and onto (for any $y\in{\mathbf R^+}$, take $x = \ln y \in \mathbf{R}$). iii) $\phi(x_1 + x_2) = e^{x_1 + x_2} = e^{x_1} \cdot e^{x_2} = \phi(x_1) \cdot \phi(x_2)$. Shaoyun Yi [Isomorphisms](#page-0-0) Summer 2021 6 / 16

More Properties of Isomorphisms

 $\phi: (G_1, *, e_1) \stackrel{\cong}{\longrightarrow} (G_2, \cdot, e_2) \begin{cases} \phi & \text{is one-to-one and onto, and} \\ \phi(a, *, b) & \phi(a), \phi(b) & \text{for all} \end{cases}$ $\phi(a \ast b) = \phi(a) \cdot \phi(b)$ for all $a,b \in G_1.$

i) The inverse of a group isomorphism is a group isomorphism.

ii) The composite of two group isomorphisms is a group isomorphism.

Proof: i) Let ϕ : $G_1 \rightarrow G_2$ be a group isomorphism. Then there is an inverse function $\theta: G_2 \to G_1$. To show that θ is a group isomorphism.

• θ is one-to-one and onto. \checkmark

• Let $a_2, b_2 \in G_2$ and $\theta(a_2) = a_1, \ \theta(b_2) = b_1 \rightsquigarrow \phi(a_1) = a_2, \ \phi(b_1) = b_2$. So $\phi(a_1 * b_1) = \phi(a_1) \cdot \phi(b_1) = a_2 \cdot b_2 \leadsto \theta(a_2 \cdot b_2) = a_1 * b_1 = \theta(a_2) * \theta(b_2)$ ii) Let ϕ : $(G_1, *) \rightarrow (G_2, \cdot)$ and ψ : $(G_2, \cdot) \rightarrow (G_3, \star)$ be isomorphisms. $\leadsto \psi\phi$ is one-to-one and onto. To show $\psi\phi$ preserves products. If $a, b \in G_1$ $\psi \phi(a * b) = \psi(\phi(a * b)) = \psi(\phi(a) \cdot \phi(b)) = \psi(\phi(a)) * \psi(\phi(b)) = \psi(\phi(a) * \psi(\phi(b)))$

The isomorphism ≅ is an equivalence relation. (Reflexive, Symmetric, Transitive) |

Example 1

Prove $(\langle i \rangle, \cdot)$ ≅ $(\mathbf{Z}_4, +_{[1]})$. Recall $\langle i \rangle = \{1, i, -1, -i\}, \mathbf{Z}_4 = \{[0], [1], [2], [3]\}$ |

We have seen that both $(\langle i \rangle, \cdot)$ and $(\mathbb{Z}_4, +_{[1]})$ are cyclic groups of order 4.

		\cdot 1 <i>i</i> -1 - <i>i</i> \cdot <i>i</i> ⁰ <i>i</i> ¹ <i>i</i> ² <i>i</i> ³				$+_{[1]} [0] [1] [2] [3]$			
		1 1 <i>i</i> -1 <i>i</i> i <i>j</i> ⁰ <i>i</i> ⁰ <i>i</i> ¹ <i>i</i> ² <i>i</i> ³					[0] [0] [1] [2] [3]		
		$i \mid i \mid -1 \mid -i \mid 1 \mid i^1 \mid i^2 \mid i^3 \mid i^0$					[1] [1] [2] [3] [0]		
		-1 -1 $-i$ 1 i i^2 i^2 i^3 i^0 i^1					[2] [2] [3] [0] [1]		
		$-i$ $-i$ 1 i -1 i ³ i ³ i ⁰ i ¹ i ²					[3] [3] [0] [1] [2]		

The elements of \mathbb{Z}_4 appear in the addition table in \mathbb{Z}_4 precisely the same **positions** as the exponents of *i* did in the multiplication table in $\langle i \rangle$.

Define $\phi : \mathbf{Z}_4 \to \langle i \rangle$ by $\phi([\mathsf{n}]) = i^n$. To show ϕ is a group isomorphism.

- Well-defined: If $[n] = [m]$, i.e., $n \equiv m \pmod{4}$, then $i^n = i^m$. [Why?]
- \bullet ϕ is one-to-one and onto. \checkmark
- \bullet ϕ preserves the respective operations: $\phi([n]+[m]) = \phi([n+m]) = i^{n+m} = i^n \cdot i^m = \phi([n]) \cdot \phi([m]).$

Let H be a subgroup of a group G. For any a in G, we have $aHa^{-1} \cong H$.

We have already showed that aHa^{-1} is a subgroup of G in $\S 3.2.$

Proof: Define $\phi: H \to aHa^{-1}$ by $\phi(h) = aha^{-1}$ for all $h \in H$.

- Well-defined: It is easy to see that $\phi(h) \in \mathit{aHa}^{-1}.$
- one-to-one: $\phi(\mathit{h}_1) = \phi(\mathit{h}_2) \leadsto \mathit{ah}_1 a^{-1} = \mathit{ah}_2 a^{-1} \leadsto \mathit{h}_1 = \mathit{h}_2$
- onto: If $y\in aHa^{-1}$, then $y=aha^{-1}$ for some $h\in H.$ Thus $\phi(h)=y.$
- \bullet ϕ respects multiplication in H: For h, $k \in H$,

 $\phi(hk)=$ ahka $^{-1}=$ ah $(a^{-1}a)$ ka $^{-1}=($ aha $^{-1})($ aka $^{-1})=\phi(h)\phi(k).$ Thus, ϕ is a group isomorphism.

Another way to show that ϕ is one-to-one and onto

Define a function $\phi^{-1}: \mathsf{G}_2 \to \mathsf{G}_1$, and verify that ϕ^{-1} is the inverse of ϕ .

That is, need to check $\phi^{-1} \circ \phi = 1_{G_1}$ and $\phi \circ \phi^{-1} = 1_{G_2}$.

Recall that $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$: We define $\phi \colon \mathbf{R} \to \mathbf{R}^+$ by letting $\phi(x) = e^x$. To show ϕ is one-to-one and onto, define $\phi^{-1}:{\sf R}^+\rightarrow {\sf R}$ by $\phi^{-1}(y)=$ In ${\sf y}.$

• Well-defined \checkmark • Verify that this is the inverse function of ϕ :

$$
\phi(\phi^{-1}(y)) = \phi(\ln y) = e^{\ln y} = y, \quad \phi^{-1}(\phi(x)) = \phi^{-1}(e^{x}) = \ln e^{x} = x.
$$

Recall $aHa^{-1} \cong H$: We define $\phi \colon H \to aHa^{-1}$ by letting $\phi(h) = aha^{-1}.$ To show that ϕ is one-to-one and onto, we define ϕ^{-1} : aHa $^{-1}$ \rightarrow H by

$$
\phi^{-1}(b) = a^{-1}ba \quad \text{for all } b \in aHa^{-1}.
$$
 (Well-defined \checkmark)

Verify that this is the inverse function of ϕ :

$$
\phi(\phi^{-1}(b)) = \phi(a^{-1}ba) = a(a^{-1}ba)a^{-1} = b
$$

$$
\phi^{-1}(\phi(h)) = \phi^{-1}(aha^{-1}) = a^{-1}(aha^{-1})a = h
$$

Some Structural Properties Preserved by Isomorphisms

Let ϕ : $G_1 \rightarrow G_2$ be an isomorphism of groups.

i) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 .

ii) If G_1 is abelian, then so is G_2 .

iii) If G_1 is cyclic, then so is G_2 .

Proof: i) Assume $a \in G_1$ with $a^n = e_1$. So $(\phi(a))^n = \phi(a^n) = \phi(e_1) = e_2$. \rightarrow $o(\phi(a))|n$. To show $n|o(\phi(a))$: Since ϕ is an isomorphism, there exists ϕ^{-1} s.t. $\phi^{-1}(\phi(a))=$ a. So $a^{o(\phi(a))}=\phi^{-1}(\phi(a))^{o(\phi(a))}=\phi^{-1}(e_2)=e_1$ \checkmark . ii) Let $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$ for $a_1, b_1 \in G_1$ and $a_2, b_2 \in G_2$. Then $a_2 \cdot b_2 = \phi(a_1) \cdot \phi(b_1) = \phi(a_1 * b_1) \stackrel{!}{=} \phi(b_1 * a_1) = \phi(b_1) \cdot \phi(a_1) = b_2 \cdot a_2.$ \overline{iii}) Suppose G₁ is cyclic with $G_1 = \langle a \rangle$. For any $y \in G_2$, we have $y = \phi(x)$ for some $x \in G_1$. Write $x = a^n$ for some $n \in \mathbb{Z}$. Then

$$
y = \phi(x) = \phi(a^n) = (\phi(a))^n.
$$

Thus G_2 is cyclic, generated by $\phi(a)$.

This gives us a technique for proving that two groups are not isomorphic.

Examples: Prove that two Groups are NOT Isomorphic.

$(\overline{\mathsf{R}}, +) \not\cong (\overline{\mathsf{R}^\times}, \cdot)$

In $(\mathbf{R}^{\times},\cdot)$, there is an element of order 2, namely, -1 .

In $(R, +)$, there is no element of order 2. (If so, $2x = 0 \rightsquigarrow x = 0$)

$\overline{(\mathsf{R}^\times,\cdot)\not\cong (\mathsf{C}^\times,\cdot)}$

In $(\mathbf{R}^{\times}, \cdot)$, only 1 and -1 have finite orders, i.e., $o(1) = 1$ and $o(-1) = 2$. In (C^{\times}, \cdot) , there are elements of other finite orders. e.g., $o(i) = 4$.

$\mathbf{Z}_4 \not\cong \mathbf{Z}_2 \times \mathbf{Z}_2$

 \mathbb{Z}_4 is cyclic. That is, there is an element $([1]_4$ or $[3]_4$) of order 4 in \mathbb{Z}_4 . $\mathbb{Z}_2 \times \mathbb{Z}_2$ is not cyclic. Any non-identity element must have order 2.

$\mathbf{Z}_9 \times \mathbf{Z}_9 \not\cong \mathbf{Z}_3 \times \mathbf{Z}_3 \times \mathbf{Z}_3 \times \mathbf{Z}_3$

In the 1st group, there are elements of order 9. e.g., $([1]_9, [1]_9)$. In the 2nd group, any non-identity element must have order 3.

Examples: Groups of Order 6: S_3 , $GL_2(\mathbb{Z}_2)$, \mathbb{Z}_6 , $\mathbb{Z}_2 \times \mathbb{Z}_3$

- The first two groups $(S_3$ and $GL_2(\mathbb{Z}_2)$ are nonabelian.
- The last two groups (\mathbb{Z}_6 and $\mathbb{Z}_2 \times \mathbb{Z}_3$) are abelian (in fact, cyclic).

$\mathbf{Z}_6 \cong \mathbf{Z}_2 \times \mathbf{Z}_3$

Proof: Let $\mathbf{Z}_6 = \langle [1]_6 \rangle$, $\mathbf{Z}_2 \times \mathbf{Z}_3 = \langle [1]_2, [1]_3 \rangle$. Define $\phi : \mathbf{Z}_6 \to \mathbf{Z}_2 \times \mathbf{Z}_3$ by $\phi([1]_6) = ([1]_2, [1]_3).$

And so $\phi([n]_6) = \phi(n[1]_6) = n\phi([1]_6) = n([1]_2, [1]_3) = ([n]_2, [n]_3).$

- well-defined: If $[n_1]_6 = [n_2]_6$, then $[n_1]_2 = [n_2]_2$ and $[n_1]_3 = [n_2]_3$.
- one-to-one: For $([n_1]_2, [n_1]_3) = ([n_2]_2, [n_2]_3)$, to show $[n_1]_6 = [n_2]_6$.

We have 2|($n_1 - n_2$) and 3|($n_1 - n_2$). \rightsquigarrow 6|($n_1 - n_2$) since gcd(2, 3) = 1. ✓

- Since $|\mathbf{Z}_6| = |\mathbf{Z}_2 \times \mathbf{Z}_3| = 6$, any one-to-one mapping must be onto. \checkmark
- For any $m, n \in \mathbb{Z}$, $\phi([n]_6 + [m]_6) = \phi([n+m]_6) = ([n+m]_2, [n+m]_3) =$ $([n]_2 + [m]_2, [n]_3 + [m]_3) = ([n]_2, [n]_3)([m]_2, [m]_3) = \phi([n]_6)\phi([m]_6).$ \Box

Prove that $\operatorname{GL}_2(\mathbf{Z}_2) \cong S_{34}$

In §3.3, we described S_3 by letting $e = (1)$, $a = (123)$ and $b = (12)$ and so $S_3 = \{e, a, a^2, b, ab, a^2b\}, \text{ where } a^3 = e, b^2 = e, ba = a^2b.$ Also in §3.3, we saw that those 6 elements in $GL_2(\mathbb{Z}_2)$ and their orders are $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ order 1 3 3 2 2 2 To establish the connection between S_3 and $GL_2(\mathbb{Z}_2)$, let $e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $a = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, $b = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\leadsto a^3 = e$, $b^2 = e$, $ba = a^2b$ Each element of $\operatorname{GL}_2(\mathbf{Z}_2)$ can be expressed uniquely as one of e, a, a², b, ab, a²b. Let $\phi((123))=[\begin{smallmatrix}1&1\1&0\end{smallmatrix}],\ \phi((12))=[\begin{smallmatrix}0&1\1&0\end{smallmatrix}]$ and extend this to all elements by $\phi((123)^i(12)^j) = \left[\begin{smallmatrix} 1 & 1 \\ 1 & 0 \end{smallmatrix}\right]^j \left[\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}\right]^j$ for $i = 0, 1, 2$ and $j = 0, 1$.

 ϕ is a group isomorphism.

The unique forms of the respective elements show ϕ is one-to-one and onto The multiplication tables are identical shows ϕ respects the two operations.

An easier way to check that ϕ which preserves products is one-to-one

Let $\phi: G_1 \to G_2$ be a function s.t. $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$. Then ϕ is one-to-one if and only if $\phi(x) = e_2$ implies $x = e_1$ for all $x \in G_1$.

Proof: (\Rightarrow) If ϕ is one-to-one, then only e_1 can map to e_2 . (\Leftarrow) For $\phi(x_1) = \phi(x_2)$ for some $x_1, x_2 \in G_1$, to show $x_1 = x_2$. $\phi(x_1 * x_2^{-1}) = \phi(x_1) \cdot \phi(x_2^{-1}) = \phi(x_1) \cdot (\phi(x_2))^{-1} = \phi(x_2) \cdot (\phi(x_2))^{-1} = e_2$ $\rightsquigarrow x_1 * x_2^{-1} = e_1$ (by assumption), and thus $x_1 = x_2$.

 $\mathbf{Z}_{mn} \cong \mathbf{Z}_m \times \mathbf{Z}_n$ if $gcd(m, n) = 1$.

Proof: Recall that (in §3.3) $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic if and only if $gcd(m, n) = 1$. Define $\phi: \mathbf{Z}_{mn} \to \mathbf{Z}_m \times \mathbf{Z}_n$ by $\phi([x]_{mn}) = ([x]_m, [x]_n)$. Show ϕ is an isomorphism. • well-defined: If $[x]_{mn} = [y]_{mn}$, then $[x]_m = [y]_m$ and $[x]_n = [y]_n$. • For $x, y \in \mathbb{Z}$, $\phi([x]_{mn} + [y]_{mn}) = \phi([x + y]_{mn}) = ([x + y]_m, [x + y]_n) =$ $([x]_m + [y]_m, [x]_n + [y]_n) = ([x]_m, [x]_n)([y]_m, [y]_n) = \phi([x]_{mn})\phi([y]_{mn})$ • one-to-one: $\phi([x]_{mn}) = ([0]_m, [0]_n) \leadsto m | x, n | x \leadsto m n | x \leadsto [x]_{mn} = [0]_{mn}$ • Since $|\mathbf{Z}_{mn}| = |\mathbf{Z}_m \times \mathbf{Z}_n|$, any one-to-one mapping must be onto. Shaoyun Yi [Isomorphisms](#page-0-0) Summer 2021 15 / 16

Example

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

 $G_2 = \left\{ \left[\begin{array}{cc} m & b \\ 0 & 1 \end{array} \right] : m \neq 0 \right\}$ under matrix multiplication.

Define $\phi : G_1 \to G_2$ by $\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$. To show ϕ is an isomorphism. well-defined: For $f_{m,b} \in G_1$, we have $\phi(f_{m,b}) \in G_2$ since $m \neq 0$. \checkmark For any $f_{m_1,b_1}, f_{m_2,b_2} \in G_1$, to show $\phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1,b_1})\phi(f_{m_2,b_2})$. For any $x \in \mathbf{R}$, we have $f_{m_1,b_1} \circ f_{m_2,b_2}(x) = \cdots = m_1 m_2 x + (m_1 b_2 + b_1)$. $\rightsquigarrow \phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1m_2,m_1b_2+b_1}) = \begin{bmatrix} m_1m_2 & m_1b_2+b_1 \ 0 & 1 \end{bmatrix};$ Also $\phi(f_{m_1,b_1})\phi(f_{m_2,b_2}) = \begin{bmatrix} m_1 & b_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} m_2 & b_2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} m_1m_2 & m_1b_2+b_1 \\ 0 & 1 \end{bmatrix}$. one-to-one: $\phi(\mathit{f}_{m,b}) = \left[\begin{smallmatrix} m & b \ 0 & 1 \end{smallmatrix}\right] = e_2 = \left[\begin{smallmatrix} 1 & 0 \ 0 & 1 \end{smallmatrix}\right] \rightsquigarrow m = 1, b = 0.$ To show $\mathit{f}_{1,0} = e_1$

 $f_{1,0} \circ f_{m,b}(x) = f_{1,0}(mx + b) = mx + b \leq f_{m,b}(x);$ $f_{m,b} \circ f_{1,0}(x) \leq f_{m,b}(x)$ onto: It is obvious by definition of ϕ . П