$\S3.4$ Isomorphisms

Shaoyun Yi

MATH 546/701I

University of South Carolina

Summer 2021

Review

- Group: abelian v.s. nonabelian & finite v.s. infinite
- Subgroup
 - cyclic (\rightsquigarrow abelian): $|\langle a \rangle| = o(a)$; If $o(a) < \infty$, then $a^k = e \Leftrightarrow o(a)|k$.
 - Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then |H||n.
 - o(a)|n for any $a \in G$.
 - Any group of prime order is cyclic.
- Constructing (sub)groups
 - $H \cap K$ is the largest subgroup contained in both H and K.
 - Product of two subgroups: HK is not always a subgroup of G.
 - If h⁻¹kh ∈ K for all h ∈ H and k ∈ K, then HK is a subgroup of G. And HK is the smallest subgroup containing both H and K.
 - $|HK| = |H||K|/|H \cap K|$ if G is a finite group.
 - Direct product: $G_1 \times G_2$ is a group under the operation $(*, \cdot)$.
 - $o((a_1, a_2)) = [o(a_1), o(a_2)]$
 - $|G_1 \times G_2| = |G_1| \cdot |G_2|$ if G_1, G_2 are finite groups.
 - $Z_n \times Z_m$ is cyclic $\Leftrightarrow \gcd(n, m) = 1$.
 - Subgroup generated by S: $\langle S \rangle$ is the smallest subgroup that contains S.
 - Field F: New groups defined over F.

Examples: Group Table in G with |G| = 2 or 3

Consider the group tables of the subgroup $\{\pm 1\}$ of \bm{Q}^{\times} and the group $\bm{Z}_2.$

Multiplication in $\{\pm 1\}$

Group tabl				G = 2	I.
	*	e e a	а		L
	е	е	а		L
	а	а	е		L
	_				,

Group table in G with $ G = 3$									
	*	е	а	b					
	е	е	а	b					
	а	а	b	е					
	b	b	a b e	а					
In fact, G is cyclic, i.e. $b = a^2$									

All groups with order 2 (or 3) must have the same algebraic properties.

Shaoyun Yi

Let $(G_1, *)$ and (G_2, \cdot) be two groups, and let $\phi : G_1 \to G_2$ be a function. Then ϕ is said to be a **group isomorphism** if

- i) ϕ is one-to-one and onto, and
- ii) $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$.

In this case, G_1 is said to be **isomorphic** to G_2 , and we write $G_1 \cong G_2$.

To prove that two groups are **isomorphic**, you need to

- 1) define a function ϕ (well-defined), and then
- 2) verify that ϕ is a group isomorphism.

Sometimes your first guess for ϕ is might not work, so you might need to try several different functions until you find one satisfying the requirements

Properties of Group Isomorphisms

Let $(G_1, *)$ and (G_2, \cdot) be groups, and let $\phi : G_1 \to G_2$ be an isomorphism. Let e_1 and e_2 be the identity elements of G_1 and G_2 , respectively. Then i) $\phi(e_1) = e_2$. ii) $\phi(a^{-1}) = (\phi(a))^{-1}$ for all $a \in G_1$. iii) $\phi(a^n) = (\phi(a))^n$ for all $a \in G_1$ and all $n \in \mathbb{Z}$. **Proof:** i) $\phi(e_1) \cdot \phi(e_1) = \phi(e_1 * e_1) = \phi(e_1) = \phi(e_1) \cdot e_2 \rightsquigarrow \phi(e_1) = e_2$ ii) $\phi(a^{-1}) \cdot \phi(a) = \phi(a^{-1} * a) = \phi(e_1) \stackrel{\text{i}}{=} e_2 \rightsquigarrow \phi(a^{-1}) = (\phi(a))^{-1}$ iii) By induction, we have $\phi(a_1 * a_2 * \cdots * a_n) = \phi(a_1) \cdot \phi(a_2) \cdot \ldots \cdot \phi(a_n) \quad \text{for } a_1, a_2, \ldots, a_n \in G_1.$ In particular, $\phi(a^n) = (\phi(a))^n$ for any positive integer *n*. Furthermore, $\phi(a^n) = (\phi(a))^n$ for all $n \in \mathbb{Z}$. For $n < 0, n = -|n| \rightsquigarrow \phi(a^n) = \phi((a^{-1})^{|n|}) = (\phi(a^{-1}))^{|n|} \stackrel{\text{ii}}{=} ((\phi(a))^{-1})^{|n|}.$

Any group isomorphism preserves general products, the identity and inverses.

Example

$$\phi \colon (G_1, *, e_1) \stackrel{\cong}{\longrightarrow} (G_2, \cdot, e_2) \begin{cases} \phi \text{ is one-to-one and onto, } and \\ \phi(a * b) = \phi(a) \cdot \phi(b) \text{ for all } a, b \in G_1. \end{cases}$$

 ϕ preserves general products, the identity element and inverses of elements.

To prove $G_1 \cong G_2$, you need to $\begin{cases}
 define \phi \text{ (well-defined), and then} \\
 verify that \phi \text{ is an isomorphism.}
\end{cases}$

Prove that
$$(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$$
.

Proof: We need a function $\phi : \mathbf{R} \to \mathbf{R}^+$ that has the following properties:

- sends real numbers to positive real numbers
- sends addition to multiplication
- sends the identity $e_1 = 0$ of $(\mathbf{R}, +)$ to the identity $e_2 = 1$ of (\mathbf{R}^+, \cdot)

Try $\phi(x) = e^x$ i) $\phi(x) = e^x > 0$ for all $x \in \mathbb{R}$. That is, $\phi(x) \in \mathbb{R}^+$.ii) ϕ is one-to-one $(e^{x_1} = e^{x_2} \rightsquigarrow x_1 = x_2)$ and onto (for any $y \in \mathbb{R}^+$, take $x = \ln y \in \mathbb{R}$). iii) $\phi(x_1 + x_2) = e^{x_1 + x_2} = e^{x_1} \cdot e^{x_2} = \phi(x_1) \cdot \phi(x_2)$.Shaovun Yi

More Properties of Isomorphisms

 $\phi \colon (G_1, *, e_1) \xrightarrow{\cong} (G_2, \cdot, e_2) \begin{cases} \phi \text{ is one-to-one and onto, } and \\ \phi(a * b) = \phi(a) \cdot \phi(b) \text{ for all } a, b \in G_1. \end{cases}$

i) The inverse of a group isomorphism is a group isomorphism.

ii) The composite of two group isomorphisms is a group isomorphism.

Proof: i) Let $\phi : G_1 \to G_2$ be a group isomorphism. Then there is an inverse function $\theta : G_2 \to G_1$. To show that θ is a group isomorphism.

• θ is one-to-one and onto. \checkmark

• Let $a_2, b_2 \in G_2$ and $\theta(a_2) = a_1, \ \theta(b_2) = b_1. \rightsquigarrow \phi(a_1) = a_2, \ \phi(b_1) = b_2.$ So $\phi(a_1 * b_1) = \phi(a_1) \cdot \phi(b_1) = a_2 \cdot b_2 \rightsquigarrow \theta(a_2 \cdot b_2) = a_1 * b_1 = \theta(a_2) * \theta(b_2)$ ii) Let $\phi : (G_1, *) \rightarrow (G_2, \cdot)$ and $\psi : (G_2, \cdot) \rightarrow (G_3, *)$ be isomorphisms. $\rightsquigarrow \psi \phi$ is one-to-one and onto. To show $\psi \phi$ preserves products. If $a, b \in G_1$ $\psi \phi(a * b) = \psi(\phi(a * b)) = \psi(\phi(a) \cdot \phi(b)) = \psi(\phi(a)) * \psi(\phi(b)) = \psi \phi(a) * \psi \phi(b)$

The isomorphism \cong is an equivalence relation. (Reflexive, Symmetric, Transitive)

Example 1

Prove $(\langle i \rangle, \cdot) \cong (\mathbf{Z}_4, +_{[]})$. Recall $\langle i \rangle = \{1, i, -1, -i\}, \mathbf{Z}_4 = \{[0], [1], [2], [3]\}$

We have seen that both $(\langle i \rangle, \cdot)$ and $(\mathbf{Z}_4, +_{[]})$ are cyclic groups of order 4.

				— i							1	[0]	[1]	[2]	[3]
				— i						[0)]	[0]	[1]	[2]	[3]
				1						[1	1	[1]	[2]	[3]	[0]
				i										[0]	
—i	— <i>i</i>	1	i	-1	i ³	i ³	i ⁰	i^1	i ²					[1]	

The elements of Z_4 appear in the addition table in Z_4 precisely the same positions as the exponents of *i* did in the multiplication table in $\langle i \rangle$.

Define $\phi : \mathbf{Z}_4 \to \langle i \rangle$ by $\phi([n]) = i^n$. To show ϕ is a group isomorphism.

- Well-defined: If [n] = [m], i.e., $n \equiv m \pmod{4}$, then $i^n = i^m$. [Why?]
- ϕ is one-to-one and onto. \checkmark
- ϕ preserves the respective operations:

$$\phi([n] + [m]) = \phi([n + m]) = i^{n+m} = i^n \cdot i^m = \phi([n]) \cdot \phi([m]).$$

Shaoyun Yi

Let *H* be a subgroup of a group *G*. For any *a* in *G*, we have $aHa^{-1} \cong H$.

We have already showed that aHa^{-1} is a subgroup of G in §3.2.

Proof: Define $\phi: H \to aHa^{-1}$ by $\phi(h) = aha^{-1}$ for all $h \in H$.

- Well-defined: It is easy to see that $\phi(h) \in aHa^{-1}$.
- one-to-one: $\phi(h_1) = \phi(h_2) \rightsquigarrow ah_1 a^{-1} = ah_2 a^{-1} \rightsquigarrow h_1 = h_2$
- onto: If $y \in aHa^{-1}$, then $y = aha^{-1}$ for some $h \in H$. Thus $\phi(h) = y$.
- ϕ respects multiplication in H: For $h, k \in H$,

 $\phi(hk) = ahka^{-1} = ah(a^{-1}a)ka^{-1} = (aha^{-1})(aka^{-1}) = \phi(h)\phi(k).$ Thus, ϕ is a group isomorphism.

Another way to show that ϕ is one-to-one and onto

Define a function $\phi^{-1} : G_2 \to G_1$, and **verify** that ϕ^{-1} is the inverse of ϕ .

That is, need to check $\phi^{-1} \circ \phi = 1_{G_1}$ and $\phi \circ \phi^{-1} = 1_{G_2}$.

Recall that $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$: We define $\phi \colon \mathbf{R} \to \mathbf{R}^+$ by letting $\phi(x) = e^x$. To show ϕ is one-to-one and onto, define $\phi^{-1} \colon \mathbf{R}^+ \to \mathbf{R}$ by $\phi^{-1}(y) = \ln y$.

• Well-defined \checkmark • Verify that this is the inverse function of ϕ :

$$\phi(\phi^{-1}(y)) = \phi(\ln y) = e^{\ln y} = y, \quad \phi^{-1}(\phi(x)) = \phi^{-1}(e^x) = \ln e^x = x$$

Recall $aHa^{-1} \cong H$: We define $\phi: H \to aHa^{-1}$ by letting $\phi(h) = aha^{-1}$. To show that ϕ is one-to-one and onto, we define $\phi^{-1}: aHa^{-1} \to H$ by

$$\phi^{-1}(b) = a^{-1}ba$$
 for all $b \in aHa^{-1}$. (Well-defined \checkmark)

Verify that this is the inverse function of ϕ :

$$\phi(\phi^{-1}(b)) = \phi(a^{-1}ba) = a(a^{-1}ba)a^{-1} = b$$

$$\phi^{-1}(\phi(h)) = \phi^{-1}(aha^{-1}) = a^{-1}(aha^{-1})a = h$$

Some Structural Properties Preserved by Isomorphisms

Let $\phi: G_1 \to G_2$ be an isomorphism of groups.

i) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 .

ii) If G_1 is abelian, then so is G_2 .

iii) If G_1 is cyclic, then so is G_2 .

Proof: i) Assume $a \in G_1$ with $a^n = e_1$. So $(\phi(a))^n = \phi(a^n) = \phi(e_1) = e_2$. $\Rightarrow o(\phi(a))|n$. To show $n|o(\phi(a))$: Since ϕ is an isomorphism, there exists ϕ^{-1} s.t. $\phi^{-1}(\phi(a)) = a$. So $a^{o(\phi(a))} = \phi^{-1}(\phi(a))^{o(\phi(a))} = \phi^{-1}(e_2) = e_1 \checkmark$. ii) Let $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$ for $a_1, b_1 \in G_1$ and $a_2, b_2 \in G_2$. Then $a_2 \cdot b_2 = \phi(a_1) \cdot \phi(b_1) = \phi(a_1 * b_1) \stackrel{!}{=} \phi(b_1 * a_1) = \phi(b_1) \cdot \phi(a_1) = b_2 \cdot a_2$. iii) Suppose G_1 is cyclic with $G_1 = \langle a \rangle$. For any $y \in G_2$, we have $y = \phi(x)$ for some $x \in G_1$. Write $x = a^n$ for some $n \in \mathbb{Z}$. Then

$$\mathbf{y} = \phi(\mathbf{x}) = \phi(\mathbf{a}^n) = (\phi(\mathbf{a}))^n.$$

Thus G_2 is cyclic, generated by $\phi(a)$.

This gives us a technique for proving that two groups are not isomorphic.

Examples: Prove that two Groups are NOT Isomorphic.

 $\phi: G_1 \xrightarrow{\cong} G_2 \begin{cases} \text{If } a \text{ has order } n \text{ in } G_1, \text{ then } \phi(a) \text{ has order } n \text{ in } G_2. \\ \text{If } G_1 \text{ is abelian (resp. cyclic), then so is } G_2. \end{cases}$

$(\mathsf{R},+) ot\cong (\mathsf{R}^{ imes},\cdot)$

In $(\mathbf{R}^{\times}, \cdot)$, there is an element of order 2, namely, -1.

In (**R**, +), there is no element of order 2. (If so, $2x = 0 \rightsquigarrow x = 0$)

$(\mathsf{R}^{\times},\cdot) \cong (\mathsf{C}^{\times},\cdot)$

In $(\mathbf{R}^{\times}, \cdot)$, only 1 and -1 have finite orders, i.e., o(1) = 1 and o(-1) = 2. In $(\mathbf{C}^{\times}, \cdot)$, there are elements of other finite orders. e.g., o(i) = 4.

$\mathbf{Z}_4 \ncong \mathbf{Z}_2 imes \mathbf{Z}_2$

 Z_4 is cyclic. That is, there is an element ([1]₄ or [3]₄) of order 4 in Z_4 . $Z_2 \times Z_2$ is not cyclic. Any non-identity element must have order 2.

$\textbf{Z}_9 \times \textbf{Z}_9 \not\cong \textbf{Z}_3 \times \textbf{Z}_3 \times \textbf{Z}_3 \times \textbf{Z}_3$

In the 1st group, there are elements of order 9. e.g., $([1]_9, [1]_9)$. In the 2nd group, any non-identity element must have order 3.

Shaoyun Yi

12 / 16

Examples: Groups of Order 6: S_3 , $GL_2(Z_2)$, Z_6 , $Z_2 \times Z_3$

- The first two groups (S_3 and $GL_2(\mathbf{Z}_2)$) are nonabelian.
- The last two groups (\textbf{Z}_6 and $\textbf{Z}_2\times \textbf{Z}_3)$ are abelian (in fact, cyclic).

$\textbf{Z}_6\cong\textbf{Z}_2\times\textbf{Z}_3$

Proof: Let $Z_6 = \langle [1]_6 \rangle, Z_2 \times Z_3 = \langle [1]_2, [1]_3 \rangle$. Define $\phi : Z_6 \to Z_2 \times Z_3$ by

 $\phi([1]_6) = ([1]_2, [1]_3).$

And so $\phi([n]_6) = \phi(n[1]_6) = n\phi([1]_6) = n([1]_2, [1]_3) = ([n]_2, [n]_3).$

- well-defined: If $[n_1]_6 = [n_2]_6$, then $[n_1]_2 = [n_2]_2$ and $[n_1]_3 = [n_2]_3$.
- one-to-one: For $([n_1]_2, [n_1]_3) = ([n_2]_2, [n_2]_3)$, to show $[n_1]_6 = [n_2]_6$.
- We have $2|(n_1 n_2)$ and $3|(n_1 n_2)$. $\rightsquigarrow 6|(n_1 n_2)$ since gcd(2, 3) = 1.
- Since $|\mathbf{Z}_6| = |\mathbf{Z}_2 \times \mathbf{Z}_3| = 6$, any one-to-one mapping must be onto. \checkmark
- For any $m, n \in \mathbb{Z}$, $\phi([n]_6 + [m]_6) = \phi([n+m]_6) = ([n+m]_2, [n+m]_3) = ([n]_2 + [m]_2, [n]_3 + [m]_3) = ([n]_2, [n]_3)([m]_2, [m]_3) = \phi([n]_6)\phi([m]_6)$.

Prove that $\operatorname{GL}_2(\mathbf{Z}_2) \cong S_3$

In §3.3, we described S_3 by letting e = (1), a = (123) and b = (12) and so $S_3 = \{e, a, a^2, b, ab, a^2b\}, \text{ where } a^3 = e, b^2 = e, ba = a^2b.$ Also in §3.3, we saw that those 6 elements in $GL_2(\mathbb{Z}_2)$ and their orders are $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ order 1 3 3 2 2 2 To establish the connection between S_3 and $GL_2(\mathbb{Z}_2)$, let $e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, a = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, b = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \Rightarrow a^3 = e, b^2 = e, ba = a^2b$ Each element of $GL_2(\mathbf{Z}_2)$ can be expressed uniquely as one of e, a, a^2 , b, ab, a^2b . Let $\phi((123)) = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, $\phi((12)) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and extend this to all elements by $\phi((123)^{i}(12)^{j}) = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{i} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^{j}$ for i = 0, 1, 2 and j = 0, 1.

 ϕ is a group isomorphism.

The unique forms of the respective elements show ϕ is one-to-one and onto The multiplication tables are identical shows ϕ respects the two operations.

Shaoyun Yi

Summer 2021 14 / 16

An easier way to check that ϕ which preserves products is one-to-one

Let $\phi: G_1 \to G_2$ be a function s.t. $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$. Then ϕ is one-to-one if and only if $\phi(x) = e_2$ implies $x = e_1$ for all $x \in G_1$.

Proof: (\Rightarrow) If ϕ is one-to-one, then only e_1 can map to e_2 . (\Leftarrow) For $\phi(x_1) = \phi(x_2)$ for some $x_1, x_2 \in G_1$, to show $x_1 = x_2$. $\phi(x_1 * x_2^{-1}) = \phi(x_1) \cdot \phi(x_2^{-1}) = \phi(x_1) \cdot (\phi(x_2))^{-1} = \phi(x_2) \cdot (\phi(x_2))^{-1} = e_2$ $\rightsquigarrow x_1 * x_2^{-1} = e_1$ (by assumption), and thus $x_1 = x_2$.

 $\mathbf{Z}_{mn} \cong \mathbf{Z}_m \times \mathbf{Z}_n$ if gcd(m, n) = 1.

Proof: Recall that (in §3.3) $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic if and only if gcd(m, n) = 1. Define $\phi: \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$ by $\phi([x]_{mn}) = ([x]_m, [x]_n)$. Show ϕ is an isomorphism. • well-defined: If $[x]_{mn} = [y]_{mn}$, then $[x]_m = [y]_m$ and $[x]_n = [y]_n$. \checkmark • For $x, y \in \mathbb{Z}$, $\phi([x]_{mn} + [y]_{mn}) = \phi([x + y]_{mn}) = ([x + y]_m, [x + y]_n) = ([x]_m + [y]_m, [x]_n + [y]_n) = ([x]_m, [x]_n)([y]_m, [y]_n) = \phi([x]_{mn})\phi([y]_{mn}) \checkmark$ • one-to-one: $\phi([x]_{mn}) = ([0]_m, [0]_n) \rightsquigarrow m|x, n|x \rightsquigarrow mn|x \rightsquigarrow [x]_{mn} = [0]_{mn} \checkmark$ • Since $|\mathbb{Z}_{mn}| = |\mathbb{Z}_m \times \mathbb{Z}_n|$, any one-to-one mapping must be onto.

Example

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

 $G_2 = \left\{ \left[egin{array}{c} m & b \\ 0 & 1 \end{array}
ight] : m
eq 0
ight\}$ under matrix multiplication.

Define $\phi: G_1 \to G_2$ by $\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$. To show ϕ is an isomorphism. well-defined: For $f_{m,b} \in G_1$, we have $\phi(f_{m,b}) \in G_2$ since $m \neq 0$. For any $f_{m_1,b_1}, f_{m_2,b_2} \in G_1$, to show $\phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1,b_1})\phi(f_{m_2,b_2})$. For any $x \in \mathbf{R}$, we have $f_{m_1,b_1} \circ f_{m_2,b_2}(x) = \cdots = m_1 m_2 x + (m_1 b_2 + b_1)$. $\rightsquigarrow \phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1m_2,m_1b_2+b_1}) = \begin{bmatrix} m_1m_2 & m_1b_2+b_1 \\ 0 & 1 \end{bmatrix};$ Also $\phi(f_{m_1,b_1})\phi(f_{m_2,b_2}) = \begin{bmatrix} m_1 & b_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} m_2 & b_2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} m_1 m_2 & m_1 b_2 + b_1 \\ 0 & 1 \end{bmatrix}$. one-to-one: $\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} = e_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \rightsquigarrow m = 1, b = 0$. To show $f_{1,0} = e_1$

 $f_{1,0} \circ f_{m,b}(x) = f_{1,0}(mx+b) = mx+b \stackrel{\checkmark}{=} f_{m,b}(x); \quad f_{m,b} \circ f_{1,0}(x) \stackrel{\checkmark}{=} f_{m,b}(x)$

onto: It is obvious by definition of ϕ .

Shaoyun Yi