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Review

@ Group: abelian v.s. nonabelian & finite v.s. infinite
@ Subgroup
o cyclic (~ abelian): [(a)| = o(a); If o(a) < oo, then ak = e < o(a)|k.
o Lagrange’s Theorem: If |G| = n < oo and H C G, then |H]|n.
e o(a)|n for any a € G.
@ Any group of prime order is cyclic.
e Constructing (sub)groups
e HN K is the largest subgroup contained in both H and K.

e Product of two subgroups: HK is not always a subgroup of G.
o If hlkh € K for all h € H and k € K, then HK is a subgroup of G.
And HK is the smallest subgroup containing both H and K.
e |HK| =|H||K|/|HN K] if G is a finite group.
e Direct product: Gy X G, is a group under the operation (x,-).

° o((a1,2)) = [o(a1), 0(22)]
o |G X Gy| =|Gi| - |G| if Gi, Gy are finite groups.
e Z,x Zy is cyclic & ged(n, m) = 1.

e Subgroup generated by S: (S) is the smallest subgroup that contains S.
o Field F: New groups defined over F.
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Examples: Group Table in G with |G| =2 or 3

Consider the group tables of the subgroup {£1} of Q* and the group Z5.

Multiplication in {£1} Addition in Z,
x| 1 -1 + 1 [0] [1]
[1]

1] 1 -1 o7 0]
“1)-1 1 ]| [ [o

v

Group table in G with |G| =3
Group table in G with |G| =2

v M| *
L |0
O L |

In fact, G is cyclic, i.e. b= a?

v

All groups with order 2 (or 3) must have the same algebraic properties. J
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Group Isomorphism

Let (Gi,*) and (Gg,-) be two groups, and let ¢ : G; — G, be a function.
Then ¢ is said to be a group isomorphism if

i) ¢ is one-to-one and onto, and
i) ¢(axb)=¢(a)- ¢(b) for all a,b € Gy.
In this case, G is said to be isomorphic to G, and we write G; = G,.

To prove that two groups are isomorphic, you need to
1) define a function ¢ (well-defined), and then
2) verify that ¢ is a group isomorphism.

Sometimes your first guess for ¢ is might not work, so you might need to
try several different functions until you find one satisfying the requirements
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Properties of Group Isomorphisms

Let (Gi,*) and (Gg,-) be groups, and let ¢ : G — Gy be an isomorphism.
Let e; and e be the identity elements of G; and G, respectively. Then

i) #(e1) = e
i) ¢(a) = (p(a)) " forall a€ Gy.
i) ¢(a") = (¢(a))” for all a € Gy and all n € Z.
Proof: i) ¢(e1) - d(e1) = d(er * e1) = ¢(e1) = d(e1) - & ~ d(e1) = &
1) 6(a7) - 9(a) = olat v a) = oler) L e~ o(a ) = (6(a)) !
iii) By induction, we have
dlarxaxx---xap)=dd(a1) - ¢(az) ... d(ap) forai,an,...,an € Gy.
In particular, ¢(a") = (¢(a))” for any positive integer n. Furthermore,
p(a") = (¢(a))" forallne Z.
For n < 0,n = —n| ~ 6(a") = 6((a™)") = (a(a)" 2 (#(a) )",

Any group isomorphism preserves general products, the identity and inverses. )
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¢ is one-to-one and onto, and
¢(ax b) = ¢(a) - ¢(b) for all a,b € G;.

¢ preserves general products, the identity element and inverses of elements.

IR

¢: (G1,*,e1) — (G, -, ) {

define ¢ (well-defined), and then

To prove G; = Gp, you need to . ) ) )
verify that ¢ is an isomorphism.

Prove that (R, +) = (RT,"). )

Proof: We need a function ¢ : R — R™ that has the following properties:
@ sends real numbers to positive real numbers
@ sends addition to multiplication
@ sends the identity e; = 0 of (R, +) to the identity e = 1 of (R, ")

| Try ¢(x) = e*|i) ¢(x) = € > 0 for all x € R. That is, ¢(x) € R*.

ii) ¢ is one-to-one (& = & ~» x; = xp) and onto (for any y € RT, take
x=Iny € R). iii) ¢(x1 + x2) = €17 = &1 .2 = ¢(x1) - P(x2). O
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More Properties of Isomorphisms

c =G ¢ is one-to-one and onto, and
¢: ( 1;*,61) — ( 2,-,62) ¢(a* b) _ ¢(a) . QZ)(b) for all a,b € G;.

i) The inverse of a group isomorphism is a group isomorphism. }

ii) The composite of two group isomorphisms is a group isomorphism.

Proof: i) Let ¢ : G — G, be a group isomorphism. Then there is an
inverse function 6 : Go — Gi. To show that € is a group isomorphism.

e 0 is one-to-one and onto. v/

o Let ap, by € Gy and 0(a2) = a1, 6(b2) = b1. ~ P(a1) = a2, ¢(b1) = bo.
So ¢(ar*b1) = ¢(a1) - p(b1) = az- bo~> 0(az - by) = a1 x b1= 0(a2) = 0(b2)
i) Let ¢ : (G1,%) — (G2,-) and ¢ : (Gz,-) — (Gs, *) be isomorphisms.

~> 1)¢ is one-to-one and onto. To show ¢ preserves products. If a,b € Gy

o(ax b) = P(p(axb))=y(d(a)-¢(b))=1(4(a))x(¢(b))= 1 (a) b (b)

The isomorphism 2 is an equivalence relation. (Reflexive, Symmetric, Transitive)J
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Example 1

Prove ({i),)  (Zs,+1))- Recall (i) = {1,i,~1,—i}, Z4 = {[0}, 1], 2], 3]} |

We have seen that both ({i),-) and (Z4,+ ) are cyclic groups of order 4.

A e A L G +r1] 00 [1 2] [3]
N N ][ 0] [ [2] [3]
T A e A SR A S S A 1] [ 1] [2] [3] [0]
—1|-1 —i 1 i #|P? /:3 0t 2] [ 121 [3] [0] [1]
e T S A WA E R & 31 1 [3] [0] [1] [2]

The elements of Z, appear in the addition table in Z, precisely the same
positions as the exponents of / did in the multiplication table in (/).

Define ¢ : Z4 — (i) by ¢([n]) = i". To show ¢ is a group |somorph|sm
o Well-defined: If [n] =[m], i.e., n = m (mod 4), then i" = i™. [Why?]|
@ ¢ is one-to-one and onto. v/
@ ¢ preserves the respective operations:

o([n] + [m]) = ¢([n+ m]) = i"tm =i i™ = ¢([n]) - ([m]). n

Shaoyun Yi Isomorphisms Summer 2021 8 /16



Example 2

Let H be a subgroup of a group G. For any a in G, we have aHa™! = H. J

We have already showed that aHa=! is a subgroup of G in §3.2.

Proof: Define ¢ : H — aHa™! by ¢(h) = aha™?! for all h € H.
o Well-defined: It is easy to see that ¢(h) € aHa L.
@ one-to-one: ¢(hy) = ¢(h2) ~ ah1a=! = ahpa=t ~ hy = hy
e onto: If y € aHa™1, then y = aha™! for some h € H. Thus ¢(h) = y.
@ ¢ respects multiplication in H: For h, k € H,
¢(hk) = ahka=! = ah(a ta)ka=! = (aha1)(aka=1) = ¢(h)d(k).
Thus, ¢ is a group isomorphism. O
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Another way to show that ¢ is one-to-one and onto

Define a function ¢! : G, — Gy, and verify that ¢! is the inverse of ¢.
That is, need to check ¢ to¢ = lg, and ¢o o7l = lg,.
Recall that (R,+) = (R™",-): We define ¢: R — R™ by letting ¢(x) = €*.
To show ¢ is one-to-one and onto, define =% : RT — R by ¢~1(y) =Iny.

e Well-defined v/ e Verify that this is the inverse function of ¢:

d(¢Hy)) =d(ny) =" =y, ¢7(s(x)) = ¢ (e¥) =Ine =x.

v

Recall aHa™! = H: We define ¢p: H — aHa~! by letting ¢(h) = aha™*.
To show that ¢ is one-to-one and onto, we define ¢~ : aHa=! — H by
¢~Y(b) = atba forall b€ aHa=l. (Well-defined v)
Verify that this is the inverse function of ¢:
6(¢~1(b)) = ¢(a~1ha) = a(a~1ba)at = b
¢~ (¢(h)) = ¢~'(aha™') = a~'(aha~')a = h
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Some Structural Properties Preserved by Isomorphisms

Let ¢ : Gi — Gy be an isomorphism of groups.

i) If a has order n in Gy, then ¢(a) has order n in G,.

ii) If Gy is abelian, then so is G,.

i) If Gy is cyclic, then so is Gp.
Proof: i) Assume a € Gy with a” = e1. So (¢(a))"” = ¢(a") = ¢(e1) = e2.
~ o(¢(a))|n. To show n|o(¢(a)): Since ¢ is an isomorphism, there exists
¢t st o7 (¢(a)) = a. So 2P = ¢71(¢(a))°@D) = (&) = e V.
ii) Let ¢(a1) = a2 and ¢(b1) = by for a1, by € Gy and az, b, € Gp. Then

22+ by = ¢(a1) - ¢(br) = d(ar % br) = ¢(br * a1) = §(b1) - B(ar) = bz - 2.
iii) Suppose Gj is cyclic with G; = (a). For any y € Gy, we have y = ¢(x)
for some x € G;. Write x = a" for some n € Z. Then

y =¢(x) = ¢(a") = (¢(a))".
Thus Gy is cyclic, generated by ¢(a). Ol

This gives us a technique for proving that two groups are not isomorphic.
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Examples: Prove that two Groups are NOT Isomorphic.

b G — Gy If a h:.as orde_r nin Gy, ther.1 ¢(a) has o.rder nin Gy.
If Gy is abelian (resp. cyclic), then so is Go.

(R, +) % (R, )

In (R, ), there is an element of order 2, namely, —1.
In (R, +), there is no element of order 2. (If so, 2x =0 ~» x = 0) O

(va ) %;_é (C><7 )
In (R*,-), only 1 and —1 have finite orders, i.e., o(1) =1 and o(—1) = 2.
In (C*, ), there are elements of other finite orders. e.g., o(i) = 4. O

Z,*2,x1Z,
Z, is cyclic. That is, there is an element ([1]4 or [3]4) of order 4 in Z,.
Z; x Z, is not cyclic. Any non-identity element must have order 2. [

v

ZgXZg¥Z3XZ3XZ3XZ3

In the 1st group, there are elements of order 9. e.g., ([1]o, [1]9).
In the 2nd group, any non-identity element must have order 3. Ol
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Examples: Groups of Order 6: S5, GL2(Z5), Zs, Zy X Z3

@ The first two groups (S3 and GLy(Z3)) are nonabelian.
@ The last two groups (Zs and Z, x Z3) are abelian (in fact, cyclic).

Lo =2, x 23 J

Proof: Let Z6 = <[1]6>, 22 X Z3 = <[1]2, [1]3>. Define (;5 . Z6 — 22 X Z3 by
o([1s) = ([1]2, [1]s)-

And so ¢([n]s) = d(n[lle) = n¢([1]s) = n([1]2, [1]3) = ([nl2, [n]3).

e well-defined: If [n1]e = [n2]6, then [n1]2 = [n2]2 and [n1]3 = [m2]3. vV

e one-to-one: For ([nl]g, [n1]3) = ([n2]2, [n2]3), to show [n1]6 = [n2]6.
We have 2|(n1 — n2) and 3|(n1 — n2). ~ 6|(n1 — n2) since ged(2,3) = 1. /

e Since |Zg| = |Z, x Z3| = 6, any one-to-one mapping must be onto. v/

« Forany m,n € Z, ¢([ns + [mls) = o([n+ mlo) = ([n+ mla, [n+ m]s) =
()2 + [ml2. [nls + [m]s) = ()2, [al3)([mlz, [mls) = o([nle)o((mls). O
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Prove that GL,(Z;) = S;

In §3.3, we described S3 by letting e = (1), a = (123) and b = (12) and so
S3 = {e,a,a%, b,ab,a’b}, where a> =e, b> =e, ba= a°b.

Also in §3.3, we saw that those 6 elements in GL2(Z2) and their orders are
(691 [16] (811 [95] (61l [if

order 1 3 3 2 2 2

To establish the connection between S3 and GLy(Z5), let
e=1[391,a=[13], b=[93]. ~ a®=e, b>=¢, ba=2a’b
Each element of GL3(Z3) can be expressed uniquely as one of e, a, a%, b, ab, a°b.
Let ¢((123)) = [} 3], ¢((12)) = [9 3] and extend this to all elements by
o((123)7(12)Y) = [} 81'[94F fori=0,1,2 and j =0, 1.

¢ is a group isomorphism. J

The unique forms of the respective elements show ¢ is one-to-one and onto
The multiplication tables are identical shows ¢ respects the two operations.
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An easier way to check that ¢ which preserves products is one-to-one

Let ¢ : Gi — G be a function s.t. ¢(ax b) = ¢(a) - ¢(b) for all a,b € G;.
Then ¢ is one-to-one if and only if ¢(x) = e» implies x = e; for all x € Gl.J

Proof: (=) If ¢ is one-to-one, then only e; can map to e;.

(«=) For o(x1) = ¢(x2) for some x1,x2 € Gy, to show x; = xo.

d0a x5 1) = o(x1) - 0061 = ¢(x) - (802)) ™ = ¢(x) - (¢0e)) ™ = &

~3 XY K x{l = e; (by assumption), and thus x; = x». O
Zyn =22y x Z, if gcd(m, n) = 1. J

Proof: Recall that (in §3.3) Z,,, x Z,, is cyclic if and only if gcd(m, n) = 1.
Define ¢: Zpmp — Zy X Z,, by ¢([X]mn) = ([X]m, [x]n). Show ¢ is an isomorphism.
o well-defined: If [x]mn = [Y]mn, then [X]m = [y]m and [x]n = [y]n- v

o For %,y € Z, &([Xlmn + ) = &% + Ylmn) = (B¢ + Ylom, [ + y1n) =
(Xlm + Ylm, Xln + [Y1n) = (IX]ms [XIn)(Y]m, [Y]n) = @([X]mn)&([Y]mn) v

e one-to-one: ¢([X]mn) = ([0]m, [0]n) ~= ml|x, n|x ~= mn|x ~ [x]mn = [0]mn v

e Since |Z | = |Z, X Z,], any one-to-one mapping must be onto. O
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Show that the group G = {fnp : R = R| f p(x) = mx + b, m # 0} of
affine functions under composition of functions is isomorphic to the group

G ={[7%]: m#0} under matrix multiplication.
Define ¢ : Gi — Gz by ¢(fm ) = [0 1] To show ¢ is an isomorphism.
well-defined: For f,, , € G, we have ¢(f, p) € Gp since m#0. v/
For any fm, by fm,b, € G1, to show &(fm, by © fry ) = O(Fimy by ) O(Frma by )-
For any x € R, we have fy, p, © fm, b,(X) =+ = mimox + (m1bo + by).

~ ¢(fm1,b1 © Tmy, bz) = ¢(fm1m2,m1b2+b1) = [m10m2 mlbierl ];

Also Qb(fml,bl)qb(me — [m1 b1] [m2 bz] _ [mlomz m1bi+b1]_ v

one-to-one: ¢(fmp) = [F2] =e2=[39]~ m=1,b=0. Toshow fig = e

v v
fioo fmb(x) = fig(mx 4+ b) = mx+ b = f p(x); fmpo fro(x) = fmb(x)

onto: It is obvious by definition of ¢. Ol
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