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Review

Group: abelian v.s. nonabelian & finite v.s. infinite

Subgroup
cyclic ( abelian): |〈a〉| = o(a); If o(a) <∞, then ak = e ⇔ o(a)|k.

Lagrange’s Theorem: If |G | = n <∞ and H ⊆ G , then |H|
∣∣n.

o(a)|n for any a ∈ G .
Any group of prime order is cyclic.

Constructing (sub)groups
H ∩ K is the largest subgroup contained in both H and K .

Product of two subgroups: HK is not always a subgroup of G .
If h−1kh ∈ K for all h ∈ H and k ∈ K , then HK is a subgroup of G .
And HK is the smallest subgroup containing both H and K .
|HK | = |H||K |/|H ∩ K | if G is a finite group.

Direct product: G1 × G2 is a group under the operation (∗, ·).
o
(
(a1, a2)

)
= [o(a1), o(a2)]

|G1 × G2| = |G1| · |G2| if G1,G2 are finite groups.
Zn × Zm is cyclic ⇔ gcd(n,m) = 1.

Subgroup generated by S : 〈S〉 is the smallest subgroup that contains S .

Field F : New groups defined over F .
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Examples: Group Table in G with |G | = 2 or 3

Consider the group tables of the subgroup {±1} of Q× and the group Z2.

Multiplication in {±1}
× 1 −1

1 1 −1
−1 −1 1

Addition in Z2

+ [0] [1]

[0] [0] [1]
[1] [1] [0]

Group table in G with |G | = 2

∗ e a

e e a
a a e

Group table in G with |G | = 3

∗ e a b

e e a b
a a b e
b b e a

In fact, G is cyclic, i.e. b = a2

All groups with order 2 (or 3) must have the same algebraic properties.
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Group Isomorphism

Let (G1, ∗) and (G2, ·) be two groups, and let φ : G1 → G2 be a function.
Then φ is said to be a group isomorphism if

i) φ is one-to-one and onto, and

ii) φ(a ∗ b) = φ(a) · φ(b) for all a, b ∈ G1.

In this case, G1 is said to be isomorphic to G2, and we write G1
∼= G2.

To prove that two groups are isomorphic, you need to

1) define a function φ (well-defined), and then

2) verify that φ is a group isomorphism.

Sometimes your first guess for φ is might not work, so you might need to
try several different functions until you find one satisfying the requirements
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Properties of Group Isomorphisms

Let (G1, ∗) and (G2, ·) be groups, and let φ : G1 → G2 be an isomorphism.
Let e1 and e2 be the identity elements of G1 and G2, respectively. Then

i) φ(e1) = e2.

ii) φ(a−1) =
(
φ(a)

)−1
for all a ∈ G1.

iii) φ(an) =
(
φ(a)

)n
for all a ∈ G1 and all n ∈ Z.

Proof: i) φ(e1) · φ(e1) = φ(e1 ∗ e1) = φ(e1) = φ(e1) · e2  φ(e1) = e2

ii) φ(a−1) · φ(a) = φ(a−1 ∗ a) = φ(e1)
i)
= e2  φ(a−1) =

(
φ(a)

)−1
iii) By induction, we have

φ(a1 ∗ a2 ∗ · · · ∗ an) = φ(a1) · φ(a2) · . . . · φ(an) for a1, a2, . . . , an ∈ G1.

In particular, φ(an) =
(
φ(a)

)n
for any positive integer n. Furthermore,

φ(an) =
(
φ(a)

)n
for all n ∈ Z.

For n < 0, n = −|n| φ(an) = φ
(
(a−1)|n|

)
=
(
φ(a−1)

)|n| ii)
= ((φ(a))−1)|n|.

Any group isomorphism preserves general products, the identity and inverses.
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Example

φ : (G1, ∗, e1)
∼=−→ (G2, ·, e2)

{
φ is one-to-one and onto, and

φ(a ∗ b) = φ(a) · φ(b) for all a, b ∈ G1.

φ preserves general products, the identity element and inverses of elements.

To prove G1
∼= G2, you need to

{
define φ (well-defined), and then

verify that φ is an isomorphism.

Prove that (R,+) ∼= (R+, ·).

Proof: We need a function φ : R→ R+ that has the following properties:

sends real numbers to positive real numbers
sends addition to multiplication
sends the identity e1 = 0 of (R,+) to the identity e2 = 1 of (R+, ·)

Try φ(x) = ex i) φ(x) = ex > 0 for all x ∈ R. That is, φ(x) ∈ R+.

ii) φ is one-to-one (ex1 = ex2  x1 = x2) and onto (for any y ∈ R+, take
x = ln y ∈ R). iii) φ(x1 + x2) = ex1+x2 = ex1 · ex2 = φ(x1) · φ(x2).
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More Properties of Isomorphisms

φ : (G1, ∗, e1)
∼=−→ (G2, ·, e2)

{
φ is one-to-one and onto, and

φ(a ∗ b) = φ(a) · φ(b) for all a, b ∈ G1.

i) The inverse of a group isomorphism is a group isomorphism.

ii) The composite of two group isomorphisms is a group isomorphism.

Proof: i) Let φ : G1 → G2 be a group isomorphism. Then there is an
inverse function θ : G2 → G1. To show that θ is a group isomorphism.

• θ is one-to-one and onto. 3

• Let a2, b2 ∈ G2 and θ(a2) = a1, θ(b2) = b1.  φ(a1) = a2, φ(b1) = b2.

So φ(a1 ∗b1) = φ(a1) ·φ(b1) = a2 ·b2 θ(a2 · b2) = a1 ∗b1= θ(a2) ∗ θ(b2)

ii) Let φ : (G1, ∗)→ (G2, ·) and ψ : (G2, ·)→ (G3, ?) be isomorphisms.

 ψφ is one-to-one and onto. To show ψφ preserves products. If a, b ∈ G1

ψφ(a ∗ b) = ψ(φ(a∗b))=ψ(φ(a)·φ(b))=ψ(φ(a))?ψ(φ(b))= ψφ(a) ? ψφ(b)

The isomorphism ∼= is an equivalence relation. (Reflexive, Symmetric, Transitive)
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Example 1

Prove (〈i〉, ·) ∼= (Z4,+[ ]). Recall 〈i〉 = {1, i ,−1,−i},Z4 = {[0], [1], [2], [3]}

We have seen that both (〈i〉, ·) and (Z4,+[ ]) are cyclic groups of order 4.

· 1 i −1 −i
1 1 i −1 −i
i i −1 −i 1
−1 −1 −i 1 i
−i −i 1 i −1

· i0 i1 i2 i3

i0 i0 i1 i2 i3

i1 i1 i2 i3 i0

i2 i2 i3 i0 i1

i3 i3 i0 i1 i2

+[ ] [0] [1] [2] [3]

[0] [0] [1] [2] [3]
[1] [1] [2] [3] [0]
[2] [2] [3] [0] [1]
[3] [3] [0] [1] [2]

The elements of Z4 appear in the addition table in Z4 precisely the same
positions as the exponents of i did in the multiplication table in 〈i〉.
Define φ : Z4 → 〈i〉 by φ([n]) = in. To show φ is a group isomorphism.

Well-defined: If [n] = [m], i.e., n ≡ m (mod 4), then in = im. [Why?]
φ is one-to-one and onto. 3

φ preserves the respective operations:

φ([n] + [m]) = φ([n + m]) = in+m = in · im = φ([n]) · φ([m]).
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Example 2

Let H be a subgroup of a group G . For any a in G , we have aHa−1 ∼= H.

We have already showed that aHa−1 is a subgroup of G in §3.2.

Proof: Define φ : H → aHa−1 by φ(h) = aha−1 for all h ∈ H.

Well-defined: It is easy to see that φ(h) ∈ aHa−1.

one-to-one: φ(h1) = φ(h2) ah1a
−1 = ah2a

−1  h1 = h2

onto: If y ∈ aHa−1, then y = aha−1 for some h ∈ H. Thus φ(h) = y .

φ respects multiplication in H: For h, k ∈ H,

φ(hk) = ahka−1 = ah(a−1a)ka−1 = (aha−1)(aka−1) = φ(h)φ(k).

Thus, φ is a group isomorphism.
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Another way to show that φ is one-to-one and onto

Define a function φ−1 : G2 → G1, and verify that φ−1 is the inverse of φ.

That is, need to check φ−1 ◦ φ = 1G1 and φ ◦ φ−1 = 1G2 .

Recall that (R,+) ∼= (R+, ·) : We define φ : R→ R+ by letting φ(x) = ex .

To show φ is one-to-one and onto, define φ−1 : R+ → R by φ−1(y) = ln y .

• Well-defined 3 • Verify that this is the inverse function of φ :

φ(φ−1(y)) = φ(ln y) = e ln y = y , φ−1(φ(x)) = φ−1(ex) = ln ex = x .

Recall aHa−1 ∼= H : We define φ : H → aHa−1 by letting φ(h) = aha−1.

To show that φ is one-to-one and onto, we define φ−1 : aHa−1 → H by

φ−1(b) = a−1ba for all b ∈ aHa−1. (Well-defined 3)

Verify that this is the inverse function of φ :

φ(φ−1(b)) = φ(a−1ba) = a(a−1ba)a−1 = b

φ−1(φ(h)) = φ−1(aha−1) = a−1(aha−1)a = h
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Some Structural Properties Preserved by Isomorphisms

Let φ : G1 → G2 be an isomorphism of groups.

i) If a has order n in G1, then φ(a) has order n in G2.

ii) If G1 is abelian, then so is G2.

iii) If G1 is cyclic, then so is G2.

Proof: i) Assume a ∈ G1 with an = e1. So (φ(a))n = φ(an) = φ(e1) = e2.

 o(φ(a))|n. To show n|o(φ(a)) : Since φ is an isomorphism, there exists

φ−1 s.t. φ−1(φ(a)) = a. So ao(φ(a)) = φ−1(φ(a))o(φ(a)) = φ−1(e2) = e1 3.

ii) Let φ(a1) = a2 and φ(b1) = b2 for a1, b1 ∈ G1 and a2, b2 ∈ G2. Then

a2 · b2 = φ(a1) · φ(b1) = φ(a1 ∗ b1)
!

= φ(b1 ∗ a1) = φ(b1) · φ(a1) = b2 · a2.

iii) Suppose G1 is cyclic with G1 = 〈a〉. For any y ∈ G2, we have y = φ(x)

for some x ∈ G1. Write x = an for some n ∈ Z. Then

y = φ(x) = φ(an) = (φ(a))n.

Thus G2 is cyclic, generated by φ(a).

This gives us a technique for proving that two groups are not isomorphic.
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Examples: Prove that two Groups are NOT Isomorphic.

φ : G1
∼=−→ G2

{
If a has order n in G1, then φ(a) has order n in G2.

If G1 is abelian (resp. cyclic), then so is G2.

(R,+) 6∼= (R×, ·)
In (R×, ·), there is an element of order 2, namely, −1.
In (R,+), there is no element of order 2. (If so, 2x = 0 x = 0)

(R×, ·) 6∼= (C×, ·)
In (R×, ·), only 1 and −1 have finite orders, i.e., o(1) = 1 and o(−1) = 2.
In (C×, ·), there are elements of other finite orders. e.g., o(i) = 4.

Z4 6∼= Z2 × Z2

Z4 is cyclic. That is, there is an element ([1]4 or [3]4) of order 4 in Z4.
Z2 × Z2 is not cyclic. Any non-identity element must have order 2.

Z9 × Z9 6∼= Z3 × Z3 × Z3 × Z3

In the 1st group, there are elements of order 9. e.g., ([1]9, [1]9).
In the 2nd group, any non-identity element must have order 3.
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Examples: Groups of Order 6 : S3, GL2(Z2), Z6, Z2 × Z3

The first two groups (S3 and GL2(Z2)) are nonabelian.

The last two groups (Z6 and Z2 × Z3) are abelian (in fact, cyclic).

Z6
∼= Z2 × Z3

Proof: Let Z6 = 〈[1]6〉,Z2×Z3 = 〈[1]2, [1]3〉. Define φ : Z6 → Z2×Z3 by

φ([1]6) = ([1]2, [1]3).

And so φ([n]6) = φ(n[1]6) = nφ([1]6) = n([1]2, [1]3) = ([n]2, [n]3).

• well-defined: If [n1]6 = [n2]6, then [n1]2 = [n2]2 and [n1]3 = [n2]3. 3

• one-to-one: For ([n1]2, [n1]3) = ([n2]2, [n2]3), to show [n1]6 = [n2]6.

We have 2|(n1− n2) and 3|(n1− n2).  6|(n1− n2) since gcd(2, 3) = 1. 3

• Since |Z6| = |Z2 × Z3| = 6, any one-to-one mapping must be onto. 3

• For any m, n ∈ Z, φ([n]6 + [m]6) = φ([n +m]6) = ([n +m]2, [n +m]3) =
([n]2 + [m]2, [n]3 + [m]3) = ([n]2, [n]3)([m]2, [m]3) = φ([n]6)φ([m]6).
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Prove that GL2(Z2) ∼= S3

In §3.3, we described S3 by letting e = (1), a = (123) and b = (12) and so

S3 = {e, a, a2, b, ab, a2b}, where a3 = e, b2 = e, ba = a2b.

Also in §3.3, we saw that those 6 elements in GL2(Z2) and their orders are

[ 1 0
0 1 ] [ 1 1

1 0 ] [ 0 1
1 1 ] [ 0 1

1 0 ] [ 1 1
0 1 ] [ 1 0

1 1 ]
order 1 3 3 2 2 2

To establish the connection between S3 and GL2(Z2), let

e = [ 1 0
0 1 ] , a = [ 1 1

1 0 ] , b = [ 0 1
1 0 ].  a3 = e, b2 = e, ba = a2b

Each element of GL2(Z2) can be expressed uniquely as one of e, a, a2, b, ab, a2b.

Let φ((123)) = [ 1 1
1 0 ], φ((12)) = [ 0 1

1 0 ] and extend this to all elements by

φ((123)i (12)j) = [ 1 1
1 0 ]i [ 0 1

1 0 ]j for i = 0, 1, 2 and j = 0, 1.

φ is a group isomorphism.

The unique forms of the respective elements show φ is one-to-one and onto

The multiplication tables are identical shows φ respects the two operations.
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An easier way to check that φ which preserves products is one-to-one

Let φ : G1 → G2 be a function s.t. φ(a ∗ b) = φ(a) · φ(b) for all a, b ∈ G1.
Then φ is one-to-one if and only if φ(x) = e2 implies x = e1 for all x ∈ G1.

Proof: (⇒) If φ is one-to-one, then only e1 can map to e2.

(⇐) For φ(x1) = φ(x2) for some x1, x2 ∈ G1, to show x1 = x2.

φ(x1 ∗ x−12 ) = φ(x1) · φ(x−12 ) = φ(x1) · (φ(x2))−1 = φ(x2) · (φ(x2))−1 = e2

 x1 ∗ x−12 = e1 (by assumption), and thus x1 = x2.

Zmn
∼= Zm × Zn if gcd(m, n) = 1.

Proof: Recall that (in §3.3) Zm ×Zn is cyclic if and only if gcd(m, n) = 1.

Define φ : Zmn → Zm × Zn by φ([x ]mn) = ([x ]m, [x ]n). Show φ is an isomorphism.

• well-defined: If [x ]mn = [y ]mn, then [x ]m = [y ]m and [x ]n = [y ]n. 3

• For x , y ∈ Z, φ([x ]mn + [y ]mn) = φ([x + y ]mn) = ([x + y ]m, [x + y ]n) =
([x ]m + [y ]m, [x ]n + [y ]n) = ([x ]m, [x ]n)([y ]m, [y ]n) = φ([x ]mn)φ([y ]mn) 3

• one-to-one: φ([x ]mn) = ([0]m, [0]n)  m|x , n|x  mn|x  [x ]mn = [0]mn 3

• Since |Zmn| = |Zm × Zn|, any one-to-one mapping must be onto.
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Example

Show that the group G1 = {fm,b : R→ R | fm,b(x) = mx + b,m 6= 0} of
affine functions under composition of functions is isomorphic to the group

G2 =
{[

m b
0 1

]
: m 6= 0

}
under matrix multiplication.

Define φ : G1 → G2 by φ(fm,b) =
[
m b
0 1

]
. To show φ is an isomorphism.

well-defined: For fm,b ∈ G1, we have φ(fm,b) ∈ G2 since m 6= 0. 3

For any fm1,b1 , fm2,b2 ∈ G1, to show φ(fm1,b1 ◦ fm2,b2) = φ(fm1,b1)φ(fm2,b2).

For any x ∈ R, we have fm1,b1 ◦ fm2,b2(x) = · · · = m1m2x + (m1b2 + b1).

 φ(fm1,b1 ◦ fm2,b2) = φ(fm1m2,m1b2+b1) =
[
m1m2 m1b2+b1

0 1

]
;

Also φ(fm1,b1)φ(fm2,b2) =
[
m1 b1
0 1

] [
m2 b2
0 1

]
=
[
m1m2 m1b2+b1

0 1

]
. 3

one-to-one: φ(fm,b) =
[
m b
0 1

]
= e2 = [ 1 0

0 1 ] m = 1, b = 0. To show f1,0 = e1

f1,0 ◦ fm,b(x) = f1,0(mx + b) = mx + b
3
= fm,b(x); fm,b ◦ f1,0(x)

3
= fm,b(x)

onto: It is obvious by definition of φ.
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