§3.3 Constructing Examples

Shaoyun Yi

MATH 546/701I

University of South Carolina

Summer 2021

Review

$\sqrt{ }$ Closure

- Subgroup H : \int $\overline{\mathcal{L}}$ Identity Inverses (no worry about associativity)
	- \bullet Alternative way: H is nonempty and $ab^{-1} \in H$ for all a, $b \in H$
	- **If H** is finite, then H is nonempty and $ab \in H$ for all $a, b \in H$
	- e.g.: $\mathsf{Z}\subseteq\mathsf{Q}\subseteq\mathsf{R}\subseteq\mathsf{C};\,\mathsf{R}^+\subseteq\mathsf{R}^\times;\,n\mathsf{Z}\subseteq\mathsf{Z};\,\operatorname{SL}_n(\mathsf{R})\subseteq\operatorname{GL}_n(\mathsf{R}).$
- Cyclic subgroup $\langle a \rangle$ is the **smallest** subgroup of G containing $a \in G$. $\mathsf{e.g.}\colon\left\langle i\right\rangle \subseteq\mathbf{C}^{\times}\ \&\ \left\langle 2i\right\rangle \subseteq\mathbf{C}^{\times};\ \left\langle \left(123\right)\right\rangle \subseteq S_{3}\ \&\ \left\langle \left(12\right)\right\rangle \subseteq S_{3}.$
- G is cyclic if $G = \langle a \rangle$.
	- e.g.: $\mathbb{Z}, \ \mathbb{Z}_n, \ \mathbb{Z}_5^{\times}$. not e.g.: $\mathbb{Z}_8^{\times}, \ S_3$.
- $o(a) = |\langle a \rangle|$. If $o(a) = n$ is finite, then $a^k = e \Leftrightarrow n | k$.
- Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then $|H| \mid n$.
	- $o(a)$ |n for any $a \in G$. $\leadsto a^n = e \dashrightarrow$ Euler's theorem
	- Any group of prime order is cyclic (and so abelian).
		- \rightarrow Any group of order 2, 3, or 5 must be cyclic.

$|G|=4$

For $a \in G$ with $a \neq e$, then either $o(a) = 2$ or $o(a) = 4$. i) If $o(a) = 4$, then $G = \langle a \rangle = \{e, a, a^2, a^3\}.$

ii) If there is no element of order 4, then $o(a) = 2$ for all $a \neq e$.

Each element must occur exactly once in each row and column.

Both cases are abelian. \rightarrow The group of order 4 is always abelian.

$|G|=6$

We have seen two basic examples of groups of order 6:

- $\mathbb{Z}_6 = \{ [0], [1], [2], [3], [4], [5] \}$ is cyclic. (generator $[a], (a, 6) = 1$)
- $S_3 = \{(1), (12), (13), (23), (123), (132)\}$ is nonabelian.

 \rightarrow The order of the **smallest** nonabelian group is 6.

Let $e = (1), a = (123)$ and $b = (12). \rightsquigarrow a^2 = (132), a^3 = e; b^2 = e.$ Each element of S_3 in the form $a^i b^j$ uniquely, for $i = 0, 1, 2$ and $j = 0, 1$:

$$
(1) = e, (123) = a, (132) = a2, (12) = b, (13) = ab, (23) = a2b.
$$

Q: What is *ba*? **A:** $ba = a^2b$ (Double check: $(12)(123) = (23)$)

$$
S_3 = \{e, a, a^2, b, ab, a^2b\}
$$
, where $a^3 = e$, $b^2 = e$, $ba = a^2b$.

 Ω : What is ba^2 ? ? **A**: $ba^2 = (ba)a = (a^2b)a = a^2(ba) = a^2(a^2b) = ab$

Multiplication Table for S_3

$$
S_3 = \{e, a, a^2, b, ab, a^2b\}
$$
, where $a^3 = e$, $b^2 = e$, $ba = a^2b$.

We also calculated $ba^2 = (ba)a = (a^2b)a = a^2(ba) = a^2(a^2b) = ab.$

<i>e a</i> a^2 <i>b</i> ab a^2b <i>e e a</i> a^2 <i>b</i> ab a^2b <i>a</i> a^2 <i>e</i> ab a^2b <i>b</i> <i>a</i> ² <i>a</i> ² <i>e a</i> a^2b <i>b</i> ab <i>b</i> b a^2b ab <i>e</i> a^2 <i>a</i> <i>ab</i> ab <i>b</i> a^2b <i>a e</i> a^2 <i>a</i> ² <i>a</i> ² <i>a b</i>			

Product of two Subgroups

Recall that the intersection of subgroups of a group is again a subgroup.

For H, $K \subset G$, $H \cap K$ is the largest subgroup contained in both H and K.

Q: What is the smallest subgroup containing both H and K ?

Let G be a group, and let S and T be subsets of G. Then

 $ST = \{x \in G : x = st \text{ for some } s \in S, t \in T\}.$

If H and K are subgroups of G, then we call HK the **product** of H and K.

A: The product HK if it is a subgroup. But, it is not always a subgroup.

If $h^{-1}kh \in K$ for all $h \in H$ and $k \in K$, then HK is a subgroup of G .

Proof: Closure: For $g_1 = h_1 k_1$ and $g_2 = h_2 k_2 \rightarrow g_1 g_2 = (h_1 k_1)(h_2 k_2)$ $= h_1(h_2h_2^{-1})k_1h_2k_2 = h_1h_2(h_2^{-1}k_1h_2)k_2 \in HK$ \checkmark ldentity: $e = e \cdot e \in HK$ Inverses: For $g = h k$, $g^{-1} = (h^{-1}h)k^{-1}h^{-1} = h^{-1}((h^{-1})^{-1}k^{-1}h^{-1}) \in HK$

If G is abelian, then the product of any two subgroups is again a subgroup.

If G is a finite group, then $|HK| = |H||K|/|H \cap K|$.

For H, $K \subset G$, $H \cap K$ is the largest subgroup contained in both H and K.

• For any element $t \in H \cap K$, if $hk \in HK$, then we can write

$$
hk=(ht)(t^{-1}k)\in HK.
$$

 \rightarrow Every element in HK can be written in at least $|H \cap K|$ different ways.

 \bullet On the other hand, if $hk = h'k' \in HK$, then $h'^{-1}h = k'k^{-1} \in H \cap K$. Set

$$
t:=h'^{-1}h=k'k^{-1}\in H\cap K.
$$

 \rightsquigarrow $h'=ht^{-1}$ and $k'=tk \quad \rightsquigarrow$ $h'k'=(ht^{-1})(tk)$ for some $t\in H\cap K.$

 \rightsquigarrow Every element in HK can be written in at most $|H \cap K|$ different ways.

 \rightsquigarrow Every element in HK can be written in exactly $|H \cap K|$ different ways:

$$
|HK| = \frac{|H||K|}{|H \cap K|}.
$$

Examples: $|HK| = |H||K|/|H \cap K|$ for $|G| < \infty$

Let $G = \mathbb{Z}_{15}^{\times}$ and $H = \{[1], [11]\}$. Note G is abelian and $|G| = \varphi(15) = 8$.

• $K = \{ [1], [4] \}$: $|HK| = 4$. Computing all possible products in HK gives

 $[1][1] = [1],$ $[1][4] = [4],$ $[11][1] = [11],$ $[11][4] = [14].$

 \rightsquigarrow HK = {[1], [4], [11], [14]} is a subgroup of order 4.

• $L = \langle [7] \rangle = \{[1], [4], [7], [13]\}$: $|HK| = 8 = |G|$. List all products in HK:

 $HL = \{ [1], [2], [4], [7], [8], [11], [13], [14] \} = \mathbb{Z}_{15}^{\times}$.

If the operation is additive, then we write $H + K$ (the sum of H and K).

$$
a\mathbf{Z}+b\mathbf{Z}=(a,b)\mathbf{Z}
$$

Let $h \in H = aZ$ and $k \in K = bZ$. Let $(a, b) = d$. To show $H + K = dZ$.

• $H + K \subseteq d\mathbf{Z}$: $h + k$ is a linear combination of a and b. $\rightsquigarrow (a, b)|(h + k)$

• $d\mathbf{Z} \subseteq H + K: d$ is the smallest positive linear combination of a and b.

$$
\leadsto d \in H + K.
$$
 It implies that $dZ \subseteq H + K$ since $dZ = \langle d \rangle$.

Direct Product of two Groups

The set of all ordered pairs (x_1, x_2) such that $x_1 \in G_1$ and $x_2 \in G_2$ is called the **direct product** of G_1 and G_2 , denoted by $G_1 \times G_2$. That is,

 $G_1 \times G_2 = \{(x_1, x_2): x_1 \in G_1 \text{ and } x_2 \in G_2\}.$

If G_1 , G_2 are finite groups, then $|G_1 \times G_2| = |G_1| \cdot |G_2|$.

Let $(G_1, *, e_1)$ and (G_2, \cdot, e_2) be groups.

- i) The direct product $G_1 \times G_2$ is a group under the operation defined for all $(a_1, a_2), (b_1, b_2) \in G_1 \times G_2$ by $(a_1, a_2)(b_1, b_2) = (a_1 * b_1, a_2 \cdot b_2)$.
- ii) If $a_1 \in G_1$ and $a_2 \in G_2$ have orders n and m, respectively, then the element (a_1, a_2) has order $k = [n, m]$ in $G_1 \times G_2$.

Proof: i) Closure: *I* Associativity: For (a_1, a_2) , (b_1, b_2) , $(c_1, c_2) \in G_1 \times G_2$ $(a_1, a_2)((b_1, b_2)(c_1, c_2)) = \ldots = ((a_1, a_2)(b_1, b_2))(c_1, c_2).$ Identity: (e_1, e_2) ✓ Inverses: $(a_1, a_2)^{-1} = (a_1^{-1}, a_2^{-1})$ ✓ ii) $(a_1, a_2)^{[n,m]} = (e_1, e_2) \rightarrow k | [n, m]$. If $(a_1, a_2)^k = (a_1^k, a_2^k) = (e_1, e_2)$, then $n | k$ and $m | k$. \rightarrow [n, m] | k. Thus, $k = [n, m]$.

Example: Klein four-group $\mathbb{Z}_2 \times \mathbb{Z}_2$

The addition table for $\mathbb{Z}_2 \times \mathbb{Z}_2 = \{([0],[0]),([1],[0]),([0],[1]),([1],[1])\}$:

The pattern in this table is the same as the table below.

This group has order 4 and each element except the identity has order 2.

$Z \times Z$ is not cyclic.

Proof by contradiction: Suppose $\mathbf{Z} \times \mathbf{Z} = \langle (m, n) \rangle = \{k(m, n): k \in \mathbf{Z}\}.$

However, $\langle (m, n) \rangle$ cannot contain both of $(1, 0)$ and $(0, 1)$. (Check it!) \square

Natural subgroups: $\langle (1, 0) \rangle$ and $\langle (0, 1) \rangle$. The "diagonal" subgroup $\langle (1, 1) \rangle$.

 $\mathbb{Z}_2 \times \mathbb{Z}_3$ is cyclic and $\mathbb{Z}_2 \times \mathbb{Z}_4$ is not cyclic.

Proof: ([1], [1]) has order $[2,3] = 6 = |Z_2 \times Z_3| \rightarrow Z_2 \times Z_3$ is cyclic. $|Z_2 \times Z_4| = 8$: In the first component the possible orders are 1 and 2. In the second component the possible orders are $1, 2, 4$.

 \rightarrow The largest possible least common multiple we can have is $4 < 8$. \rightarrow So there is no element of order 8 and the group is not cyclic.

 $\mathbf{Z}_n \times \mathbf{Z}_m$ is cyclic if and only if $gcd(n, m) = 1$.

$\mathbf{Z}_n \times \mathbf{Z}_m$ is cyclic if and only if $gcd(n, m) = 1$.

Proof: (\Rightarrow): Assume $(a, b) \in \mathbb{Z}_n \times \mathbb{Z}_m$ has order $k = |\mathbb{Z}_n \times \mathbb{Z}_m| = nm$. Since $o(a)|n, o(b)|m$ and $k = [o(a), o(b)]$. $\rightsquigarrow o(a) = n, o(b) = m$. If not,

$$
nm = k = [o(a), o(b)] = \frac{o(a) \cdot o(b)}{\gcd(o(a), o(b))} \leq o(a) \cdot o(b) < nm.
$$

 $m = k = [n, m]$. Hence $gcd(n, m) = 1$ since $nm = [n, m] \cdot gcd(n, m)$. (\Leftarrow) : Assume $(n, m) = 1$, consider the cyclic subgroup $\langle ([1]_n, [1]_m)\rangle$. Then $o([1]_n) = n$ and $o([1]_m) = m$.

It follows that

$$
o(([1]_n,[1]_m))=[o([1]_n),o([1]_m)]=[n,m]=\frac{nm}{\gcd(n,m)}=nm.
$$

Thus $\mathbf{Z}_n \times \mathbf{Z}_m = \langle (\lbrack 1 \rbrack_n, \lbrack 1 \rbrack_m) \rangle$, namely, is cyclic.

Example from Matrices

 $|\mathrm{GL}_2(\mathsf{Z}_p)| = (p^2-1) \cdot (p^2-p)$, where p is a prime number.

Proof: 1st row: There are p^2-1 choices since $(0,0)$ cannot be a choice. 2nd row: There are $p^2\!-\!p$ choices. (scalars of 1st row cannot be choices)

 $|GL_2(\mathbb{Z}_2)| = 6$: These 6 elements and their orders are as follows. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ order 1 3 3 2 2 2 We simply use 0 and 1 to denote the congruence classes $[0]_2$ and $[1]_2$. The group $\mathrm{GL}_2(\mathbf{Z}_2)$ is nonabelian. e.g. $\begin{bmatrix} 0 & 1 \ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \ 1 & 1 \end{bmatrix}.$

 S_3 is also nonabelian with order 6. In fact, they are "the same" group! (see §3.4) Shaoyun Yi [Constructing Examples](#page-0-0) Summer 2021 13 / 15

Subgroup Generated by a Nonempty S of the Group G

A finite product of elements of S and their inverses is called a **word** in S. The set of all words in S is denoted by $\langle S \rangle$.

For example, for $a,b,c\in\mathcal{S}$, then $a^{-1}a^{-1}bab^{-1}acb^{-1}cbc^{-1}c^{-1}\in\langle\mathcal{S}\rangle.$

 $\langle S \rangle$ is a subgroup of G, and is equal to the intersection of all subgroups of G that contain S. That is, $\langle S \rangle$ is the smallest subgroup that contains S.

Proof: Closure: If x, y are two words in S, then xy is again a word in S. \checkmark Identity: $e = aa^{-1} \in \langle S \rangle$. Here $a \in S$ always exists since S is nonempty. \checkmark Inverses: $x^{-1} \in \langle S \rangle$: reverses the order & changes the sign of exponent. \checkmark If $S \subset H$, where H is a subgroup of G, then it contains all words in S. So $\langle S \rangle \subseteq H \leadsto \langle S \rangle$ is the intersection of all subgroups of G that contain S. \square

 $S = \{a\}$: In this case, $\langle S \rangle = \langle a \rangle$ is a cyclic subgroup. Simple!

 $S = \{a, b\}$: In a nonabelian group G, it becomes much more complicated to describe $\langle S \rangle$.

Definition of a Field

Let F be a set with two binary operations $+$ and \cdot with respective identity elements 0 and 1, where $0 \neq 1$. Then F is called a field if

- 1) the set of all elements of F is an abelian group under $+$;
- 2) the set of all nonzero elements of F is an abelian group under \cdot ;
- 3) $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a+b) \cdot c = a \cdot c + b \cdot c$ for all $a, b, c \in F$.

3) distributive laws give a connection between addition & multiplication

For any element $a \in F$, we have $a \cdot 0 = 0$ and $0 \cdot a = 0$.

 $0 + a \cdot 0 = a \cdot 0 = a \cdot (0 + 0) = a \cdot 0 + a \cdot 0 \rightsquigarrow 0 = a \cdot 0$. Similarly, $0 \cdot a = 0$.

For example, Q, R, C, Z_p , when p is a prime number. But Z is not a field.

Let F be a field. Then $GL_n(F)$ is a group under matrix multiplication.

i) Closure ✔ ii) Associativity ✔ iii) Identity: In iv) Inverses: $A^{-1}\in \mathrm{GL}_n(\mathcal{F})$