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Review

i) Closure e x
i) Associativity e~ (/)/
iii) Identity: Uniqueness by Associativity

Group (G, )
iv) Inverses: Uniqueness by Associativity

€g. (va')v (Sym(S),o), (Mn(R)7+matrix)f (GLn(R)a'matrix)

Cancellation law

Abelian group: eg. (Z,+), (Zn, +11), (Z5:11)
@ Finite group (order) v.s. Infinite group

Conjugacy: x ~ y if y = axa—! ~» Equivalence relation
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Subgroup

Let G be a group, and let H be a subset of G. Then H is called a
subgroup of G if H is itself a group, under the operation induced by G. J

e Two special subgroups of any group G: G & the trivial subgroup {e}
e ZC Q CRCC: each group is a subgroup of the next under +
o {£1} C Q* C R* C C*: each group is a subgroup of the next under -

e R™ = {x € R|x > 0} is a subgroup of R* under multiplication.

nZ :={x € Z: x = nk for k € Z} is a subgroup of Z under addition. ]

i) closure: v ii) associativity: v iii) identity: 0 iv) inverses: its negative

The special linear group over R: SL,(R) = {A € GL,(R)|det(A) =1} is
a subgroup of GL,(R) under matrix multiplication. J

i) det(AB) = det(A)det(B) i) v i) /, iv) A7L, since det(A71) = 1.
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Simpler ways

Let G be a group with identity element e, and let H be a subset of G.
Then H is a subgroup of G if and only if the following conditions hold:

i) ab € H for all a, b € H; i) e € H; i) a € H for all a € H.

Proof: (=): i) / (ii) Let € be an identity element for H. To show ¢’ = e.
e’ =¢e [Why?] and e =€ [Why?] =ée =¢ee =¢e=c¢
iii) If a € H, then a must have an inverse b € H. To show b = a L

In G, we have ab=e = aa~!. Hence b= a 1.
(«<): associativity: For a,b,c € H, (ab)c = a(bc) in G, so also in H. [

Let G be a group and let H be a subset of G. Then H is a subgroup of G
if and only if H is nonempty and ab~—! € H for all a,b € H. J

Proof: (=): Nonempty: e € H; If a,b € H, then b= € H and ab™! € H.

(<): Since H is nonempty, there is at least a € H. Then i) e = aa~! € H.
Also iii) a=! = ea™! € H. Finally, i) ab=a(b"')"' € Hfora,bc H. [
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Let H be the set of all diagonal matrices in the group G = GL,(R).

Way 1: H is a subgroup of G if and only if the following conditions hold:
i) ab e H for all a,b € H; i) I € H; iii)ale Hforallac H.J

Note that the diagonal entries of any element in H must all be nonzero.
i) The product of two diagonal matrices is still a diagonal matrix.
ii) The identity matrix /, is obviously a diagonal matrix.

iii) The inverse of a € H exists, and it is again a diagonal matrix.

Way 2: H is a subgroup of G < H # (), and ab™! € H for all a,b € H. J

Nonempty: /, € H; It is easy to see that the second condition also holds.
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Finite Subgroup

Let G be a group, and let H be a finite, nonempty subset of G. Then H is
a subgroup of G if and only if ab € H for all a,b € H. J

Proof: (=): v (<=): By previous result ~+ to show b=! € H for all b € H.
Given b € H, consider the set

{b,b* b, ...},

which is a subset of H. Since H is a finite set, they cannot all be distinct.
There exists some repetition: b” = b for some n > m > 0. ~ b~ = e.
Either b=e (n—m=1)or bb" "1 =¢ (n—m> 1) implies bt € H.OJ

Example: Subgroups of S3
o S3& {(1)}
o {(1),(12)}, {(1),(13)}, {(1),(23)}
e {(1),(123),(132)}
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Cyclic Subgroup

Let G be a group, and let a be any element of G. The set
(a) ={x€ G: x=2a" for some ne€ Z}

is called the cyclic subgroup generated by a.

The group G is called a cyclic group if there exists an element a € G
such that G = (a). In this case, a is called a generator of G.

Let G be a group, and let a € G.
1) The set (a) is a subgroup of G.

2) If K is any subgroup of G such that a € K, then (a) C K.

1) i) a™ a" € (a) = a™a" = a™t" € (a) ii) e = & iii) (") L = a7 " € (a)
2) For any subgroup K containing a, it must contain a" for all n € Z-,.

It also contains e = a® and a=" = (a")~!. Hence (a) C K. O

When the operation is denoted additively rather than multiplicatively,
we should consider multiples (eg. na) rather than powers (eg. a").
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(Z,+) is cyclic. In fact, Z = (1) = (-1). J

Proof: Z=(a) ={na: n€ Z} = a = +1. O

(Zn,+17) = ([1]) is cyclic. In fact, we can determine all possible generatorsJ

Z, = ([a])<[1] is a multiple of [a]<[a] is a unit, i.e., [a] € Z<(a,n) =1

Sometimes (Z7, 1) is cyclic, sometimes not. J

o Z7 = ([2]) = ([3]) is cyclic. However, [4] is not a generator.
e Z; = {[1],[3],[5],[7]} is not cyclic because [a]> = [1] for all [a] € Z;.
Every proper subgroup of Sz is cyclic, but S3 is not cyclic. J

Recall that subgroups of S3 are

o {(1)}={(1))
o {(1),(12)} = ((12)), {(1),(13)} = ((13)), {(1),(23)} = ((23))
o {(1),(123),(132)} = {(123)) = ((132))

@ S3 is not cyclic since no cyclic subgroup is equal to all of S3.
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Order of an Element a € G

We say a has finite order if there exists a positive integer ns.t. a" = e.
The smallest such positive integer is called the order of a, denoted by o(a)

If a"” £ e for any positive integer n, then a is said to have infinite order.

Every element of a finite group must have finite order. [Why?]

i) If a has infinite order, then aX # a™ for all integers k # m.
i) If a has finite order o(a) and k € Z, then a¥ = e < o(a)|k.
iii) If o(a) = n, then a¥ = a™ < k = m (mod n). We have |(a)| = o(a).

Proof: i) Assume ak = a™ for k > m. Then a¥"™ = e. Thus, k — m = 0.
i) («<):v (=) : Let o(a) = n. Write k = nqg+r, where 0 < r < n. Thus,
a"=akmM = kg = k(") I =e-e9=e. =r=0 = nlk
i) ak = aM = ak—m = e(ii:;n|(k —m). Toshow (a) = {e,a,...a" 1} =S

S C (a) by definition of (a); S is a subgroup of G & a€ S,s0 (a) C S [
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Examples

The intersection of any collection of subgroups is again a subgroup. (HW)

Given any subset S of a group G, the intersection of all subgroups of G
that contain S is in fact the smallest subgroup that contains S.

By the previous slide, (a) is the smallest subgroup containing S = {a}.

Examples

In the multiplicative group C*, consider the powers of i. We have
(i) ={1, i, =1, —i}, which is a cyclic subgroup of C* of order 4.

The situation is quite different if we consider (2/), which is infinite:
. 1. 1 1. . .
(2i) = {, g~ 3b 1, 2/, —4, —8i, }

Let z = cos 2T + isin 2. We can show that (z) = {z | k € Z} is the set
of complex nth roots of unity, which is a cyclic subgroup of C* of order n.
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Lagrange's Theorem

If H is a subgroup of the finite group G, then |H| is a divisor of |G]|. J

Proof: Let |G| = n and |H| = m. To show m | n. For a,b € G, we define
a~b ifabteH.

Then ~ is an equivalence relation. (reflexive v/ symmetric v transitive v)
Let [a] ;= {b € Gla~ bi.e., ab~! € H} denote the equivalence class of a.
Consider the function p, : H — [a] defined by p,(h) = ha for all h € H.
Claim: The function p, a one-to-one correspondence between H and [a].

i) If h € H, then p,(h) = ha € [a] since a(ha)™! = h™1 € H.

ii) one-to-one: For h,k € H, if pa(h) = pa(k), then ha = ka. = h = k.
iii) onto: If b € [a], then ab-' =he€ H. = b= h"ta=p,(h71).
It follows that each equivalence class [a] has m = |H| elements.
Since the equivalence classes partition G, each element of G belongs to
precisely one of the equivalence classes. Thus

|G| = n=mt,

where t is the number of distinct equivalence classes. Hence m | n. ]
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Recall that the equivalent class [a] of a € G defined as
[a] :={b€ G:ab '€ H} ={b& G: b= ha for some h € H} = Ha.

[a] = Hb for any b€ [a]. (b=ha< h™ib=a: HaC Hb V; HbCHa/)J

For example, consider G = S3 = {(1), (12), (13), (23), (123), (132)}.
1) H={((123)) = ((132)) = {(1),(123),(132)}: Two equivalent classes
e H forms the first equivalence class: H = H(1) = H(123) = H(132)
e Any other equivalence class must be disjoint from the first one and
have the same number of elements, so the only possibility is
H(12) = {(12),(13),(23)} = H(13) = H(23).
Therefore, these two equivalent classes are H, H(12).
2) K={(12)) = {(1),(12)}: Three equivalent classes
e K forms the first equivalence class: K = K(1) = K(12)
e K(13) = {(13),(132)} = K(132)
o K(23) ={(23),(123)} = K(123)
Therefore, these three equivalent classes are K, K(13), K(23).
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Two Corollaries

The converse of Lagrange's theorem is false. (See an example in §3.6.)

Let G be a finite group of order n. For any a € G, o(a) | n. Andso a" = e.

Proof: (a) is a subgroup and |(a)| = o(a). Thus o(a)|n by Lagrange's thm

Euler’s Theorem: a*(") =1 (mod n) if (a,n) = 1. J

Proof: G = ZX with |G| = ¢(n): For any [a] € G, we have [a]#(") = [1].

Any group G of prime order is cyclic.

Proof: Let |G| = p, where p is a prime number. Let a € G,a # e. Then
|(a)| # 1, and so |(a)| must be p. [Why?]

This implies that (a) = G, and hence G is cyclic. O
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Let H be any subgroup of G and a € G. Then aHa~! is a subgroup of G. J

Proof: Note that aHa™! := {g € G | g = aha~! for some h € H}.
Closure: Let g; = ah;a™',i = {1,2}. Then g1g> = a(h1h2)a™! € aHa™L.
Identity: e = aea~! € aHa™!.

Inverses: g = aha~! € aHa™ ! ~ g7l =ahla~l € aHa™ ! O
2nd proof: Nonempty e; g1g; * = ahia t(ahaa=!)~! = ah hyta™! O

Let G be an abelian group, and let n be a fixed positive integer. Define
N:={ge€ G: g=a" forsome ac G}.

Then N is a subgroup of G.

Proof: To show N is nonempty and glggl e N, for all g1, € N.
@ The identity element e € N since e = e".
o Let g1 = af and g» = aj for some a1,a> € G. Then
_ _ _ ! _
818, ' = aj(a5) ' = ajay" = af(a, )" = (a1, )" € N. O
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