§3.1 Definition of a Group

Shaoyun Yi

MATH 546/701I

University of South Carolina

Summer 2021

Review

- Permutation $\sigma \in \text{Sym}(S)$ (or S_n)
- \bullet #| S_n | = n!
- Composition (Product) $\sigma\tau$ & Inverse σ^{-1}
- Cycle of length $k: \sigma = (a_1 a_2 \cdots a_k)$ has order k.
- Disjoint cycles are commutative
- $\bullet \sigma \in S_n$ can be written as a *unique* product of disjoint cycles.
- The order of σ is the **lcm** of the lengths (orders) of its disjoint cycles.
- A transposition is a cycle (a_1a_2) of length two.
- $\bullet \sigma \in S_n$ can be written as a product of transpositions. (NOT unique)
- **Even Permutation & Odd Permutation**
- A cycle of odd length is even. & A cycle of even length is odd.

Symmetry occurs frequently and in many forms in nature.

Example 1

Each coefficient of a poly. is a symmetric function of the poly.'s roots.

$$
f(x) = (x - r_1)(x - r_2)(x - r_3) = x^3 + bx^2 + cx + d
$$

$$
r_1 + r_2 + r_3 = -b
$$
, $r_1r_2 + r_2r_3 + r_3r_1 = c$, and $r_1r_2r_3 = -d$.

The coefficients remain unchanged under any permutation of the roots.

With respect to symmetry, *geometrically* the important thing is not the position of the points but the **operation** of moving them.

Similarly, w.r.t. considering the roots of poly, the **operation** of shifting the roots among themselves is most important and not the roots themselves.

A **binary operation** $*$ on a set S is a function

 $\ast \cdot$ S \times S \rightarrow S.

from the set $S \times S$ of all ordered pairs of elements in S into S. • The operation ∗ is said to be associative if

 $a * (b * c) = (a * b) * c$ for all $a, b, c \in S$.

• An element $e \in S$ is called an **identity** element for $*$ if

 $a * e = a$ and $e * a = a$ for all $a \in S$.

• If $*$ has an identity element e and $a \in S$, then $b \in S$ is an **inverse** for a if

 $a * b = e$ and $b * a = e$.

A binary operation ∗ permits us to combine only two elements, and so a *priori* $a * b * c$ does not make sense. But $(a * b) * c$ does make sense.

Examples

- $i)$ Multiplication defines an associative binary operation on R .
	- 1 serves as an **identity** element.
	- \bullet only nonzero element a has the inverse $1/a$.
- ii) Multiplication defines an associative binary operation on $S = \{x \in \mathbb{R} | x \geq 1\}$
	- 1 serves as an **identity** element.
	- o only 1 has the inverse 1.
- iii) Multiplication does not define a binary operation on $S = \{x \in \mathbb{R} | x < 0\}.$
- iv) Matrix multiplication defines an associative binary operation on $M_n(\mathbf{R})$.
	- the identity matrix serves as an identity element.
	- a matrix has a multiplicative inverse iff its determinant is nonzero.
- v) Matrix addition defines an associative binary operation on $M_n(\mathbf{R})$.
	- the zero matrix serves as an **identity** element.
	- each matrix has an additive **inverse**, namely, its negative.
- vi) Matrix multiplication does not define a binary operation on the set of nonzero matrices in $M_n(\mathbf{R})$. e.g. $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

Example: Well-definedness of a Binary Operation

Recall
$$
\mathbf{Q} = \left\{ \frac{m}{n} \middle| m, n \in \mathbf{Z}, n \neq 0 \right\}
$$
, where $\frac{m}{n} = \frac{p}{q}$ if $mq = np$.
If $a, b \in \mathbf{Q}$ with $a = \frac{m}{n}$ and $b = \frac{5}{t}$, then we define multiplication $ab = \frac{ms}{nt}$.

To check the well-definedness of multiplication, we need to check that the product does not depend on how we choose to represent a and b.

Suppose that we also have
$$
a = \frac{p}{q}
$$
 and $b = \frac{u}{v}$, then we need to check
\n
$$
\frac{pu}{qv} = \frac{ms}{nt}, \text{ that is, } (pu)(nt) = (qv)(ms).
$$
\n
$$
a = \frac{m}{n} = \frac{p}{q} \implies mq = np
$$
\n
$$
\implies mgsv = nptu \implies (qv)(ms) = (pu)(nt)
$$
\n
$$
b = \frac{s}{t} = \frac{u}{v} \implies sv = tu
$$

Associative Binary Operation ∗ on a set S

i) The operation $*$ has at most one identity element.

 \overline{ii}) If $*$ has an identity element, then any element has at most one inverse.

Proof: i) Suppose e and e' are identity elements for $*$. To show $e = e'$.

e is an identity element $\Rightarrow e * e' = e'$ e' is an identity element $\Rightarrow e * e' = e$ $\Big\} \Rightarrow e = e'$

ii) e: the identity element. Let b and b' be inverses for a. To show $b = b'$.

$$
b' = e * b' = (b * a) * b' = b * (a * b') = b * e = b
$$

Let e be the identity element, and a,b have inverses a^{-1} and $b^{-1}.$ Then $\overline{\mathsf{iii}}$) the inverse of a^{-1} exists and is equal to a , and

 $\overline{\mathsf{iv}}$) the inverse of $a * b$ exists and is equal to $b^{-1} * a^{-1}.$

Proof: iii) $a * a^{-1} = e$ and $a^{-1} * a = e \Rightarrow a$ is the inverse of a^{-1} . \bar{b} iv) $(a * b) * (b^{-1} * a^{-1}) = ((a * b) * b^{-1}) * a^{-1} = (a * (b * b^{-1})) * a^{-1} =$ $(a * e) * a^{-1} = a * a^{-1} = e$. Similarly, $(b^{-1} * a^{-1}) * (a * b) = e$.

Group $(G, *)$

Let $(G, *)$ be a nonempty set G together with a binary operation $*$ on G. Then $(G, *)$, or just G, is called a group if the following properties hold.

i) Closure: For all $a, b \in G$, $a * b$ is a well-defined element of G.

ii) **Associativity**: For all $a, b, c \in G$, we have $a * (b * c) = (a * b) * c$.

iii) Identity: There exists an identity element $e \in G$:

 $a * e = a$ and $e * a = a$ for all $a \in G$.

iv) Inverses: For each $a \in G$ there exists an inverse element $a^{-1} \in G$: $a * a^{-1} = e$ and $a^{-1} * a = e$.

From previous slide: e is unique and $\left(a^{-1}\right)^{-1}=$ a. \leadsto $a=b\Leftrightarrow a^{-1}=b^{-1}$

A group is a nonempty set G with an **associative** binary operation $*$, s.t. G contains an identity element e, and each element has an inverse in G.

- R^\times is a group under the standard multiplication. i) \checkmark ii) \checkmark iii) \checkmark iv) \checkmark Similarly, \mathbf{Q}^{\times} and \mathbf{C}^{\times} are groups under the standard multiplication.
- R is not a group under the standard multiplication. i) \checkmark ii) \checkmark iii) \checkmark iv) \checkmark Shaoyun Yi Shaoyun Yi [Definition of a Group](#page-0-0) Summer 2021 8 / 18

Symmetric Group

Recall: The set of all permutations of a set S is denoted by $\text{Sym}(S)$. The set of all permutations of $\{1, 2, \ldots, n\}$ is denoted by S_n .

The $Sym(S)$ is a group under the operation of composition of functions.

Let $f, g \in Sym(S)$ be any two one-to-one and onto functions.

- i) Closure: $f \circ g \in \text{Sym}(S)$
- \overline{ii}) Associativity: \circ is associative.
- $\overline{\mathsf{iii}}$) Identity: the identity function 1

iv) Inverses: f is 1-1 and onto \Leftrightarrow the inverse function f^{-1} is 1-1 and onto

The group $Sym(S)$ is called the symmetric group on S, and The group S_n is called the symmetric group of degree n.

 $\sigma\in\mathcal{S}_n\colon\sigma^0:=(1)$ and $\sigma^{-n}:=(\sigma^n)^{-1}\leadsto\sigma^m\sigma^n=\sigma^{m+n},\;(\sigma^m)^n=\sigma^{mn}, m,n\in\mathbf{Z}$ For $a\in G$ and $n\in \mathsf{Z}_{>0}$, we define a^n as σ^n and $a^0:=e,\,\,a^{-n}:=(a^n)^{-1}.$ Then $a^m * a^n = a^{m+n}$ and $(a^m)^n = a^{mn}$ for all $m, n \in \mathbb{Z}$. Shaoyun Yi **Shaoyun Yi** [Definition of a Group](#page-0-0) Summer 2021 9 / 18

Example: Multiplication Table for S_3

- \bullet In each row, each element in S_3 occurs exactly once.
- In each column, each element in S_3 occurs exactly once.

This phenomenon occurs in any such group table. [Why?] cancellation law

ä,

Cancellation law for Groups

From now on, we drop the notation $a * b$, and simply write ab instead.

Let G be a group, and let a, b, c \t G.
\ni) If
$$
ab = ac
$$
, then $b = c$.
\nii) If $ac = bc$, then $a = b$.

Proof: The proof of \overrightarrow{ii} is similar to that of \overrightarrow{i}):

$$
\mathsf{a}\mathsf{b}=\mathsf{a}\mathsf{c}\Rightarrow\mathsf{a}^{-1}(\mathsf{a}\mathsf{b})=\mathsf{a}^{-1}(\mathsf{a}\mathsf{c})\Rightarrow(\mathsf{a}^{-1}\mathsf{a})\mathsf{b}=(\mathsf{a}^{-1}\mathsf{a})\mathsf{c}\Rightarrow\mathsf{e}\mathsf{b}=\mathsf{e}\mathsf{c}\Rightarrow\mathsf{b}=\mathsf{c}\quad\Box
$$

Let G be a group and $a,b\in G.$ Then $(ab)^2=a^2b^2$ if and only if $ba=ab.$

Proof: (\Rightarrow) : By $(ab)(ab) = (ab)^2 \stackrel{!}{=} a^2b^2 = (aa)(bb)$, we have

$$
a(b(ab)) = a(a(bb)) \Rightarrow b(ab) = a(bb) \Rightarrow (ba)b = (ab)b \Rightarrow ba = ab
$$

$$
(\Leftarrow): (ab)^2 = (ab)(ab) = a(b(ab)) = a((ba)b)^{\perp} = a((ab)b) = a(a(bb)) = (aa)(bb)
$$

There is no worry about "()" by the associative law for the operation.

Proof:
$$
(\Rightarrow)
$$
: $abab = aabb \leadsto ba = ab$; (\Leftarrow) : $ba = ab \leadsto abab = aabb$.

Abelian Group $(G, +)$

A group G is said to be **abelian** if $ab = ba$ for all $a, b \in G$.

In an abelian group G, the operation is very often denoted additively. **Associativity:** $a + (b + c) = (a + b) + c$ for all $a, b, c \in G$. **Identity:** The identity element is 0 (zero element): $0 + a = a + 0 = a$ **Inverses:** The additive inverse of a is $-a$: $a + (-a) = (-a) + a = 0$ For example, Z, Q, R, C are abelian groups under the ordinary addition.

(Cancellation law) Let G be an abelian group, and let $a, b, c \in G$.

 $a + b = a + c$ (Equivalently, $b + a = c + a$) $\Rightarrow b = c$

For an abelian group G, let $a \in G$ and $n \in \mathbb{Z}_{>0}$, define $na := a + \cdots + a$. **Caution:** " na " is not a multiplication in G, since n is not an element of G. 0a := 0, $(-n)a$:= $-(na)$ → $ma + na = (m+n)a$, $m(na) = (mn)a$ for all $m, n \in \mathbb{Z}$ Shaoyun Yi Shaoyun Yi Summer 2021 12 / 18

Some Motivation for the Study of Groups

i) If G is a group and $a, b \in G$, then each of the equations $ax = b$ and $xa = b$ has a unique solution. ii) If G is a nonempty set with an associative binary operation in which $ax = b$ and $xa = b$ have solutions for all $a, b \in G$. then G is a group.

Group axioms are precisely the assumptions necessary to solve $ax = b$ or $xa = b$. **Proof:** i) Existence: $x = a^{-1}b$ for $ax = b$ & $x = ba^{-1}$ for $xa = b$. Uniqueness: e.g., if s, t are solutions of $ax = b$, then $as = b = at \Rightarrow s = t$. ii) **Identity:** Let e be a solution of $ax = a$. To show $be = b$ for all $b \in G$. Let c be a solution to $xa = b$, so $ca = b \Rightarrow be = (ca)e = c(ae) = ca = b$. Similarly, there exists e' s.t. $e'b = b$ for all $b \in G$. Therefore $e' = e'e = e$.

Inverses: Let c be a solution to $bx = e$, and let d be a solution to $xb = e$.

$$
d = de = d(bc) = (db)c = ec = c. (*)
$$

Thus $bc = e$ and $cb \stackrel{(\star)}{=} db = e$. In conclusion, c is an inverse for b. Shaoyun Yi **Shaoyun Yi** [Definition of a Group](#page-0-0) Summer 2021 13 / 18

Finite Group v.s. Infinite Group

A group G is called a **finite group** if G has a finite number of elements. In this case, the number of elements is called the **order** of G, denoted by $|G|$. If G is not finite, it is said to be an **infinite group**; e.g., $(Z, +)$.

 \mathbb{Z}_n is an abelian group under addition of congruence classes for $n \in \mathbb{Z}_{>0}$. The group \mathbf{Z}_n is finite and $|\mathbf{Z}_n| = n$.

Closure: $[a] + [b] = [a + b]$ is well-defined & $[a + b] \in \mathbb{Z}_n$ for $[a]$, $[b] \in \mathbb{Z}_n$. **Associative:** $([a] + [b]) + [c] = [(a + b) + c] = [a + (b + c)] = [a] + ([b] + [c])$. **Commutative:** $[a] + [b] = [a + b] = [b + a] = [b] + [a]$. **Identity:** $[0] + [a] = [a] + [0] = [a + 0] = [a]$. **Inverses:** $[-a] + [a] = [a] + [-a] = [a - a] = [0].$ For each $a \in \mathbb{Z}$, $[a] = [r]$ for a unique $r \in \mathbb{Z}$ with $0 \le r \le n$. $\Rightarrow |\mathbb{Z}_n| = n$

Q: Is it still true for multiplication \cdot , i.e., is \mathbb{Z}_n an abelian group under \cdot ?

A: No! ([a] has a multiplicative inverse in Z_n if and only if $(a, n) = 1$.)

\mathbf{Z}_n^\times $_n^{\times}$: Group of Units Modulo *n*

 Z_n^\times is an abelian group under multiplication of congruence classes for $n\geq 1$ The group Z_n^{\times} is finite and $|\mathsf{Z}_n^{\times}| = \varphi(n)$.

Closure: $[a] \cdot [b] = [ab]$ is well-defined & $[ab] \in \mathbb{Z}_n^{\times}$ for $[a], [b] \in \mathbb{Z}_n^{\times}$. **Associative:** $([a] \cdot [b]) \cdot [c] = [(ab)c] = [a(bc)] = [a] \cdot ([b] \cdot [c])$. **Commutative:** $[a] \cdot [b] = [ab] = [ba] = [b] \cdot [a]$. **Identity:** $[1] \cdot [a] = [a] \cdot [1] = [a]$. **Inverses:** [a] has a multiplicative inverse $[a]^{-1} \Leftrightarrow (a,n) = 1$, i.e., $[a] \in \mathsf{Z}_n^{\times}$. We have already seen $|\mathsf{Z}_n^\times|=\varphi(n)$, where $\varphi(n)$ is Euler's φ -function.

Revisit Solving Linear Congruence

 $ax \equiv b \pmod{n} \rightsquigarrow a_1x \equiv b_1 \pmod{n_1}$ [divide both sides by $d = (a, n)$] $\rightsquigarrow [a_1]_{n_1}[x]_{n_1} = [b_1]_{n_1} \rightsquigarrow [x]_{n_1} = [a_1]_{n_1}^{-1}[b_1]_{n_1} \quad [\text{need to find } [a_1]_{n_1}^{-1} \text{ in } \mathsf{Z}^{\times}_{n_1}]$

 $\rightsquigarrow d$ distinct solutions modulo *n*: $x + kn_1$ (mod *n*), i.e., $[x + kn_1]_n$

Example: Multiplication Table of \mathbb{Z}_8^{\times} 8

- . In each row, each element of the group occurs exactly once.
- In each column, each element of the group occurs exactly once.
- The table is symmetric w.r.t. the diagonal since $({\sf Z}_8^{\times}, \cdot_{\bar{\sf I}}{}_{\bar{\sf I}})$ is abelian.

 $M_n(\mathbf{R})$ forms a group under matrix addition.

closure: $\sqrt{ }$; associativity: $\sqrt{ }$; identity: zero matrix; inverses: its negative Moreover, $(M_n(R),+)$ is abelian.

Q: Is there a matrix group under matrix multiplication? **A: Yes!**

 $GL_n(\mathbf{R}) := \{A \in M_n(\mathbf{R}) : A$ is invertible, i.e., $det(A) \neq 0\}$ is a group under matrix multiplication, called the **general linear group** of degree n over \mathbf{R} .

Closure: well-defined (by definition) & $det(AB) = det(A) det(B)$ Associativity: you should already see the proof in linear algebra course. **Identity:** the identity matrix I_n <code>Inverses:</code> A has a multiplicative inverse A^{-1} \Leftrightarrow $\det(A)\neq 0$ i.e. $A\in {\rm GL}_n({\bf R})$ However, $(GL_n(R), \cdot)$ is not abelian.

R is an **equivalence relation** if and only if for all a, b, $c \in S$ we have Reflexive law: a ∼ a;

Symmetric law: if $a \sim b$, then $b \sim a$;

Transitive law: if $a \sim b$ and $b \sim c$, then $a \sim c$.

Let G be a group and let $x, y \in G$. Write $x \sim y$ if there exists an element $a \in G$ such that $y = a x a^{-1}$. In this case we say that y is a $\bf{conjugate}$ of $x.$ In particular, the relation \sim defines an equivalence relation on G.

Reflexive law: $x = exe^{-1}$ for all $x \in G \Rightarrow x \sim x$.

Symmetric law: $y = a$ xa $^{-1} \Rightarrow x = a^{-1}$ ya, that is, x \sim y implies y \sim x.

Transitive law: $y = axa^{-1}, z = byb^{-1} \Rightarrow z = baxa^{-1}b^{-1} = (ba)x(ba)^{-1}$ i.e., $x \sim y$ and $y \sim z$ implies $x \sim z$.