§3.1 Definition of a Group

Shaoyun Yi

MATH 546/701I

University of South Carolina

Summer 2021

Review

- Permutation $\sigma \in \text{Sym}(S)$ (or S_n)
- $\#|S_n| = n!$
- Composition (Product) $\sigma \tau$ & Inverse σ^{-1}
- Cycle of length k: $\sigma = (a_1 a_2 \cdots a_k)$ has order k.
- Disjoint cycles are commutative
- $\sigma \in S_n$ can be written as a *unique* product of disjoint cycles.
- The order of σ is the **lcm** of the lengths (orders) of its disjoint cycles.
- A transposition is a cycle (a_1a_2) of length two.
- $\sigma \in S_n$ can be written as a product of transpositions. (NOT unique)
- Even Permutation & Odd Permutation
- A cycle of odd length is even. & A cycle of even length is odd.

Symmetry occurs frequently and in many forms in nature.

Example 1

Each coefficient of a poly. is a symmetric function of the poly.'s roots.

$$f(x) = (x - r_1)(x - r_2)(x - r_3) = x^3 + bx^2 + cx + d$$

$$r_1 + r_2 + r_3 = -b$$
, $r_1r_2 + r_2r_3 + r_3r_1 = c$, and $r_1r_2r_3 = -d$.

The coefficients remain unchanged under any permutation of the roots.

With respect to symmetry, *geometrically* the important thing is not the position of the points but the **operation** of moving them.

Similarly, w.r.t. considering *the roots of poly*, the **operation** of shifting the roots among themselves is most important and not the roots themselves.

A binary operation * on a set S is a function

 $*: S \times S \rightarrow S.$

from the set $S \times S$ of all ordered pairs of elements in S into S. • The operation * is said to be **associative** if

a * (b * c) = (a * b) * c for all $a, b, c \in S$.

• An element $e \in S$ is called an **identity** element for * if

a * e = a and e * a = a for all $a \in S$.

• If * has an identity element e and $a \in S$, then $b \in S$ is an **inverse** for a if

$$a * b = e$$
 and $b * a = e$.

A binary operation * permits us to combine only two elements, and so a priori a * b * c does not make sense. But (a * b) * c does make sense.

Shaoyun Yi

Examples

- i) Multiplication defines an associative binary operation on **R**.
 - 1 serves as an **identity** element.
 - only nonzero element a has the **inverse** 1/a.
- ii) Multiplication defines an associative binary operation on $S = \{x \in \mathbf{R} | x \ge 1\}$
 - 1 serves as an **identity** element.
 - only 1 has the **inverse** 1.

iii) Multiplication does not define a binary operation on $S = \{x \in \mathbf{R} | x < 0\}$.

- iv) Matrix multiplication defines an associative binary operation on $M_n(\mathbf{R})$.
 - the identity matrix serves as an **identity** element.
 - a matrix has a multiplicative inverse iff its determinant is nonzero.
- v) Matrix addition defines an associative binary operation on $M_n(\mathbf{R})$.
 - the zero matrix serves as an **identity** element.
 - each matrix has an additive **inverse**, namely, its negative.
- vi) Matrix multiplication does not define a binary operation on the set of nonzero matrices in $M_n(\mathbf{R})$. e.g. $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

Example: Well-definedness of a Binary Operation

Recall
$$\mathbf{Q} = \left\{ \frac{m}{n} \middle| m, n \in \mathbf{Z}, n \neq 0 \right\}$$
, where $\frac{m}{n} = \frac{p}{q}$ if $mq = np$.
If $a, b \in \mathbf{Q}$ with $a = \frac{m}{n}$ and $b = \frac{s}{t}$, then we define multiplication $ab = \frac{ms}{nt}$

To check the well-definedness of multiplication, we need to check that the product does not depend on how we choose to represent a and b.

Suppose that we also have
$$a = \frac{p}{q}$$
 and $b = \frac{u}{v}$, then we need to check
 $\frac{pu}{qv} = \frac{ms}{nt}$, that is, $(pu)(nt) = (qv)(ms)$.
 $a = \frac{m}{n} = \frac{p}{q} \Rightarrow mq = np$
 $\implies mqsv = nptu \Rightarrow (qv)(ms) = (pu)(nt)$
 $b = \frac{s}{t} = \frac{u}{v} \Rightarrow sv = tu$

Associative Binary Operation * on a set S

i) The operation * has at most one identity element.

ii) If * has an identity element, then any element has at most one inverse.

Proof: i) Suppose *e* and *e'* are identity elements for *. To show e = e'.

 $\left. \begin{array}{ll} e \text{ is an identity element } \Rightarrow & e \ast e' = e' \\ e' \text{ is an identity element } \Rightarrow & e \ast e' = e \end{array} \right\} \Rightarrow e = e'$

ii) e: the identity element. Let b and b' be inverses for a. To show b = b'.

$$b' = e * b' = (b * a) * b' = b * (a * b') = b * e = b$$

Let *e* be the identity element, and *a*, *b* have inverses a^{-1} and b^{-1} . Then iii) the inverse of a^{-1} exists and is equal to *a*, and iv) the inverse of a * b exists and is equal to $b^{-1} * a^{-1}$.

Proof: iii) $a * a^{-1} = e$ and $a^{-1} * a = e \Rightarrow a$ is the inverse of a^{-1} . iv) $(a * b) * (b^{-1} * a^{-1}) = ((a * b) * b^{-1}) * a^{-1} = (a * (b * b^{-1})) * a^{-1} = (a * e) * a^{-1} = a * a^{-1} = e$. Similarly, $(b^{-1} * a^{-1}) * (a * b) = e$.

Group (G, *)

Let (G, *) be a nonempty set G together with a binary operation * on G. Then (G, *), or just G, is called a **group** if the following properties hold.

i) **Closure**: For all $a, b \in G$, a * b is a *well-defined* element of G.

ii) Associativity: For all $a, b, c \in G$, we have a * (b * c) = (a * b) * c.

iii) **Identity**: There exists an **identity** element $e \in G$:

a * e = a and e * a = a for all $a \in G$.

iv) Inverses: For each $a \in G$ there exists an inverse element $a^{-1} \in G$: $a * a^{-1} = e$ and $a^{-1} * a = e$.

From previous slide: *e* is unique and $(a^{-1})^{-1} = a$. $\rightsquigarrow a = b \Leftrightarrow a^{-1} = b^{-1}$

A group is a nonempty set G with an **associative** binary operation *, s.t. G contains an **identity** element e, and each element has an **inverse** in G.

- \mathbf{R}^{\times} is a group under the standard multiplication. i) \checkmark ii) \checkmark iii) \checkmark iv) \checkmark Similarly, \mathbf{Q}^{\times} and \mathbf{C}^{\times} are groups under the standard multiplication.
- **R** is not a group under the standard multiplication. i) ✓ ii) ✓ iii) ✓ iv) × Shaoyun Yi Definition of a Group Summer 2021 8 / 18

Symmetric Group

Recall: The set of all permutations of a set S is denoted by Sym(S). The set of all permutations of $\{1, 2, ..., n\}$ is denoted by S_n .

The Sym(S) is a group under the operation of composition of functions.

Let $f, g \in Sym(S)$ be any two one-to-one and onto functions.

- i) Closure: $f \circ g \in \text{Sym}(S)$
- ii) **Associativity:** is associative.
- iii) **Identity:** the identity function 1_S

iv) **Inverses:** f is 1-1 and onto \Leftrightarrow the inverse function f^{-1} is 1-1 and onto

The group Sym(S) is called the **symmetric group** on S, and The group S_n is called the **symmetric group of degree** n.

 $\sigma \in S_n$: $\sigma^0 := (1)$ and $\sigma^{-n} := (\sigma^n)^{-1} \rightsquigarrow \sigma^m \sigma^n = \sigma^{m+n}, \ (\sigma^m)^n = \sigma^{mn}, m, n \in \mathbb{Z}$ For $a \in G$ and $n \in \mathbb{Z}_{>0}$, we define a^n as σ^n and $a^0 := e, \ a^{-n} := (a^n)^{-1}$. Then $a^m * a^n = a^{m+n}$ and $(a^m)^n = a^{mn}$ for all $m, n \in \mathbb{Z}$.

Example: Multiplication Table for S_3

0	(1)	(123)	(132)	(12)	(13)	(23)
(1)	 (1) (123) (132) (12) (13) (23) 	(123)	(132)	(12)	(13)	(23)
(123)	(123)	(132)	(1)	(13)	(23)	(12)
(132)	(132)	(1)	(123)	(23)	(12)	(13)
(12)	(12)	(23)	(13)	(1)	(132)	(123)
(13)	(13)	(12)	(23)	(123)	(1)	(132)
(23)	(23)	(13)	(12)	(132)	(123)	(1)

• In each row, each element in S_3 occurs exactly once.

• In each column, each element in S_3 occurs exactly once.

This phenomenon occurs in any such group table. [Why?] cancellation law

Shaoyun Yi

Cancellation law for Groups

From now on, we drop the notation a * b, and simply write ab instead.

Let G be a group, and let
$$a, b, c \in G$$
.
i) If $ab = ac$, then $b = c$.
ii) If $ac = bc$, then $a = b$.

Proof: The proof of ii) is similar to that of i):

$$ab = ac \Rightarrow a^{-1}(ab) = a^{-1}(ac) \Rightarrow (a^{-1}a)b = (a^{-1}a)c \Rightarrow eb = ec \Rightarrow b = c$$

Let G be a group and $a, b \in G$. Then $(ab)^2 = a^2b^2$ if and only if ba = ab.

Proof: (\Rightarrow): By $(ab)(ab) = (ab)^2 \stackrel{!}{=} a^2b^2 = (aa)(bb)$, we have $a(b(ab)) = a(a(bb)) \Rightarrow b(ab) = a(bb) \Rightarrow (ba)b = (ab)b \Rightarrow ba = ab$ (\Leftarrow): $(ab)^2 = (ab)(ab) = a(b(ab)) = a((ba)b) \stackrel{!}{=} a((ab)b) = a(a(bb)) = (aa)(bb)$

There is no worry about "()" by the associative law for the operation.

Proof:
$$(\Rightarrow)$$
: $abab = aabb \rightsquigarrow ba = ab;$ (\Leftarrow) : $ba = ab \rightsquigarrow abab = aabb.$ Shaoyun YiDefinition of a GroupSummer 2021Shaoyun YiDefinition of a Group

Abelian Group (G, +)

A group G is said to be **abelian** if ab = ba for all $a, b \in G$.

In an abelian group *G*, the operation is very often denoted additively. **Associativity:** a + (b + c) = (a + b) + c for all $a, b, c \in G$. **Identity:** The identity element is 0 (**zero** element): 0 + a = a + 0 = a **Inverses:** The additive inverse of *a* is -a: a + (-a) = (-a) + a = 0For example, **Z**, **Q**, **R**, **C** are abelian groups under the ordinary addition.

(Cancellation law) Let G be an abelian group, and let $a, b, c \in G$.

a + b = a + c (Equivalently, b + a = c + a) $\Rightarrow b = c$

For an abelian group *G*, let $a \in G$ and $n \in \mathbb{Z}_{>0}$, define $na := a + \dots + a$. **Caution:** "*na*" is not a multiplication in *G*, since *n* is not an element of *G*. $0a := 0, (-n)a := -(na) \rightsquigarrow ma + na = (m+n)a, m(na) = (mn)a$ for all $m, n \in \mathbb{Z}$ Shaoyun Yi Definition of a Group Summer 2021 12/18

Some Motivation for the Study of Groups

i) If G is a group and a, b ∈ G, then each of the equations ax = b and xa = b has a unique solution.
ii) If G is a nonempty set with an associative binary operation in which ax = b and xa = b have solutions for all a, b ∈ G, then G is a group.

Group axioms are precisely the assumptions necessary to solve ax = b or xa = b. **Proof:** i) Existence: $x = a^{-1}b$ for ax = b & $x = ba^{-1}$ for xa = b. Uniqueness: e.g., if s, t are solutions of ax = b, then $as = b = at \Rightarrow s = t$. ii) **Identity:** Let e be a solution of ax = a. To show be = b for all $b \in G$. Let c be a solution to xa = b, so ca = b. \Rightarrow be = (ca)e = c(ae) = ca = b. Similarly, there exists e' s.t. e'b = b for all $b \in G$. Therefore e' = e'e = e. **Inverses:** Let c be a solution to bx = e, and let d be a solution to xb = e.

$$d = de = d(bc) = (db)c = ec = c. \quad (\star)$$

Thus bc = e and $cb \stackrel{(\star)}{=} db = e$. In conclusion, c is an inverse for b.

Finite Group v.s. Infinite Group

A group G is called a **finite group** if G has a finite number of elements. In this case, the number of elements is called the **order** of G, denoted by |G|. If G is not finite, it is said to be an **infinite group**; e.g., (Z, +).

 Z_n is an abelian group under addition of congruence classes for $n \in Z_{>0}$. The group Z_n is finite and $|Z_n| = n$.

Closure: [a] + [b] = [a + b] is well-defined & $[a + b] \in Z_n$ for $[a], [b] \in Z_n$. Associative: ([a] + [b]) + [c] = [(a + b) + c] = [a + (b + c)] = [a] + ([b] + [c]). Commutative: [a] + [b] = [a + b] = [b + a] = [b] + [a]. Identity: [0] + [a] = [a] + [0] = [a + 0] = [a]. Inverses: [-a] + [a] = [a] + [-a] = [a - a] = [0]. For each $a \in Z$, [a] = [r] for a unique $r \in Z$ with $0 \le r < n$. $\Rightarrow |Z_n| = n$

Q: Is it still true for multiplication \cdot , i.e., is **Z**_n an abelian group under \cdot ?

A: No! ([a] has a multiplicative inverse in Z_n if and only if (a, n) = 1.)

 \mathbf{Z}_n^{\times} is an abelian group under multiplication of congruence classes for $n \ge 1$ The group \mathbf{Z}_n^{\times} is finite and $|\mathbf{Z}_n^{\times}| = \varphi(n)$.

Closure: $[a] \cdot [b] = [ab]$ is well-defined & $[ab] \in \mathbf{Z}_n^{\times}$ for $[a], [b] \in \mathbf{Z}_n^{\times}$. **Associative:** $([a] \cdot [b]) \cdot [c] = [(ab)c] = [a(bc)] = [a] \cdot ([b] \cdot [c])$. **Commutative:** $[a] \cdot [b] = [ab] = [ba] = [b] \cdot [a]$. **Identity:** $[1] \cdot [a] = [a] \cdot [1] = [a]$. **Inverses:** [a] has a multiplicative inverse $[a]^{-1} \Leftrightarrow (a, n) = 1$, i.e., $[a] \in \mathbf{Z}_n^{\times}$. We have already seen $|\mathbf{Z}_n^{\times}| = \varphi(n)$, where $\varphi(n)$ is Euler's φ -function.

Revisit Solving Linear Congruence

 $ax \equiv b \pmod{n} \rightsquigarrow a_1x \equiv b_1 \pmod{n_1} \quad [\text{divide both sides by } d = (a, n)]$ $\rightsquigarrow [a_1]_{n_1}[x]_{n_1} = [b_1]_{n_1} \rightsquigarrow [x]_{n_1} = [a_1]_{n_1}^{-1}[b_1]_{n_1} \quad [\text{need to find } [a_1]_{n_1}^{-1} \text{ in } \mathbf{Z}_{n_1}^{\times}]$

 $\rightarrow d$ distinct solutions modulo *n*: $x + kn_1 \pmod{n}$, i.e., $[x + kn_1]_n$

Example: Multiplication Table of \mathbf{Z}_8^{\times}

.[]	[1]	[3]	[5]	[7]
[1]	[1]	[3]	[5]	[7]
[3]	[3]		[7]	[5]
[5]	[5]	[7]	[1]	[3]
[7]	[7]	[5]	[3]	[1]

- In each row, each element of the group occurs exactly once.
- In each column, each element of the group occurs exactly once.
- The table is symmetric w.r.t. the diagonal since $(\mathbf{Z}_8^{\times}, \cdot [\])$ is abelian.

 $M_n(\mathbf{R})$ forms a group under matrix addition.

closure: \checkmark ; associativity: \checkmark ; identity: zero matrix; inverses: its negative Moreover, $(M_n(\mathbf{R}), +)$ is abelian.

Q: Is there a matrix group under matrix multiplication? A: Yes!

 $GL_n(\mathbf{R}) := \{A \in M_n(\mathbf{R}) : A \text{ is invertible, i.e., } det(A) \neq 0\}$ is a group under matrix multiplication, called the **general linear group** of degree *n* over **R**.

Closure: well-defined (by definition) & det(AB) = det(A) det(B) **Associativity:** you should already see the proof in linear algebra course. **Identity:** the identity matrix I_n **Inverses:** A has a multiplicative inverse $A^{-1} \Leftrightarrow \det(A) \neq 0$ i.e. $A \in GL_n(\mathbb{R})$ However, (GL_n(\mathbb{R}), ·) is not abelian. *R* is an **equivalence relation** if and only if for all $a, b, c \in S$ we have **Reflexive law:** $a \sim a$;

Symmetric law: if $a \sim b$, then $b \sim a$;

Transitive law: if $a \sim b$ and $b \sim c$, then $a \sim c$.

Let G be a group and let $x, y \in G$. Write $x \sim y$ if there exists an element $a \in G$ such that $y = axa^{-1}$. In this case we say that y is a **conjugate** of x. In particular, the relation \sim defines an equivalence relation on G.

Reflexive law: $x = exe^{-1}$ for all $x \in G \Rightarrow x \sim x$. **Symmetric law:** $y = axa^{-1} \Rightarrow x = a^{-1}ya$, that is, $x \sim y$ implies $y \sim x$. **Transitive law:** $y = axa^{-1}, z = byb^{-1} \Rightarrow z = baxa^{-1}b^{-1} = (ba)x(ba)^{-1}$ i.e., $x \sim y$ and $y \sim z$ implies $x \sim z$.