§2.3 Permutations

Shaoyun Yi

MATH 546/701I

University of South Carolina

Summer 2021

Review

•
$$(a, b)$$
 & $[a, b] \dashrightarrow (a, b) \cdot [a, b] = ab$

- (a, b)|(am + bn), linear combination of a and b
- Division Algorithm ---> The Euclidean Algorithm (matrix form)
- $(a, b) = 1 \Leftrightarrow am + bn = 1$ for some $m, n \in Z$

• If
$$b|ac$$
 and $(a,b)=1\Rightarrow b|c$

- $a \equiv b \pmod{n} \Leftrightarrow n | (a b) \Leftrightarrow a = b + qn \Leftrightarrow [a]_n = [b]_n$
- If $ac \equiv ad \pmod{n}$ and (a, n) = 1 (i.e., $a \in \mathbb{Z}_n^{\times}$) $\Rightarrow c \equiv d \pmod{n}$
- Divisor of zero **v.s.** Unit (Cancellation law \checkmark) in Z_n
- Linear congruence $ax \equiv b \pmod{n}$ has a solution $\Leftrightarrow (a, n)|b|$
- System of congruences: Chinese Remainder Theorem

• For
$$[a] \in \mathbf{Z}_n^{\times}$$
, find $[a]^{-1}$:

(i) the Euclidean algorithm (ii) successive powers (iii) trial and error

- Euler's totient function $\varphi(n) = \#\{a \colon (a, n) = 1, 1 \le a \le n\} = \#|\mathbf{Z}_n^{\times}|$
- Euler's theorem --→ Fermat's "little" theorem

Permutations

Let S be a set. A function $\sigma : S \to S$ is called a **permutation** of S if σ is one-to-one and onto. Denote Sym(S) by the set of all permutations of S.

The set of all permutations of the set $\{1, 2, ..., n\}$ will be denoted by S_n .

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix} \in S_n$$

We write the image $\sigma(i)$ of i under each integer i. For example, If $S = \{1, 2, 3\}$ and $\sigma : S \to S$ is given by $\sigma(1) = 2, \sigma(2) = 3, \sigma(3) = 1$, so $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \in S_3.$

S_n has n! elements.

Proof: $\sigma(1)$: there are *n* choices; $\sigma(2)$: there are (n-1) choices; [Why?] $\sigma(3)$: there are (n-2) choices; etc. $|S_n| = n \cdot (n-1) \cdots 2 \cdot 1 = n!$. i). If $\sigma, \tau \in \text{Sym}(S)$, then $\tau \sigma \in \text{Sym}(S)$; ii). $1_S \in \text{Sym}(S)$; iii). If $\sigma \in \text{Sym}(S)$, then $\sigma^{-1} \in \text{Sym}(S)$.

Composition and Inverse in S_n

 $\sigma, \tau \in S_n$: The composition $\sigma \tau = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(\tau(1)) & \sigma(\tau(2)) & \cdots & \sigma(\tau(n)) \end{pmatrix}$. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$. Compute $\sigma \tau$ and $\tau \sigma$. $\sigma\tau(1): 1 \xrightarrow{\tau} 2 \xrightarrow{\sigma} 3 \Rightarrow \sigma\tau(1) = 3$, etc. We obtain $\sigma\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}$. $\tau\sigma(1): 1 \xrightarrow{\sigma} 4 \xrightarrow{\tau} 1 \Rightarrow \sigma\tau(1) = 1$, etc. We obtain $\tau\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix}$. Given $\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$ in S_n , to compute σ^{-1} : Key idea: If $\sigma(i) = j$, then $i = \sigma^{-1}(j)$. i.e., turning the two rows of σ upside down and then rearranging terms. If $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}$, then $\sigma^{-1} = \begin{pmatrix} 4 & 3 & 1 & 2 \\ 1 & 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$. Shaoyun Yi Permutations Summer 2021

Cycle

Another Notation

For example, consider $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 2 & 5 \end{pmatrix} \in S_5$. We write $\sigma = (1342)$. Observe that $\sigma(1) = 3$, $\sigma(3) = 4$, $\sigma(4) = 2$, and $\sigma(2) = 1$. In the new notation we do not need to mention $\sigma(5)$ since $\sigma(5) = 5$.

Let S be a set, and let $\sigma \in \text{Sym}(S)$. Then σ is called a **cycle of length** k if there exist elements $a_1, a_2, \ldots, a_k \in S$ such that

• $\sigma(a_1) = a_2, \ \sigma(a_2) = a_3, \ \dots, \ \sigma(a_{k-1}) = a_k, \ \sigma(a_k) = a_1, \text{ and}$ • $\sigma(x) = x \text{ for all other elements } x \in S \text{ with } x \neq a_i \text{ for } i = 1, 2, \dots, k.$ In this case we write $\sigma = (a_1 a_2 \cdots a_k)$.

We can also write $\sigma = (a_2a_3\cdots a_ka_1)$ or $\sigma = (a_3a_4\cdots a_ka_1a_2)$, etc. A cycle of length $k \ge 2$ can thus be written in k different ways, depending on the starting point.

We will use (1) to denote the identity permutation 1_S .

Shaoyun Yi

Examples

Example 1

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 4 & 1 & 5 \end{pmatrix} \in S_5, \text{ then } \sigma = (134) \text{ is a cycle of length 3.}$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix} \in S_5, \text{ then } \tau = (134)(25) \text{ is not a cycle.}$$

Example 2

Let
$$\sigma = (1425)$$
 and $\tau = (263)$ be cycles in S₆. Compute the product $\sigma\tau$.

$$1 \xrightarrow{\tau} 1 \xrightarrow{\sigma} 4 \Rightarrow \sigma \tau(1) = 4$$
, etc. $\Rightarrow \sigma \tau = (1425)(263) = (142635)$.

It is NOT true in general that the product of two cycles is again a cycle.

Example 3

Consider $(1425) \in S_6$, we have (1425)(1425) = (12)(3)(45)(6) = (12)(45).

Disjoint Cycles

Let $\sigma = (a_1 a_2 \cdots a_k)$ and $\tau = (b_1 b_2 \cdots b_m)$ be cycles in Sym(S) for a set S. Then σ and τ are said to be **disjoint** if $a_i \neq b_j$ for all i, j.

(12) and (45) are disjoint in S_6 ; but (1425) and (263) are not disjoint in S_6

If $\sigma \tau = \tau \sigma$, then we say that σ and τ commute.

In general, $\sigma \tau \neq \tau \sigma$. eg., In S_3 , (12)(13) = (132), but (13)(12) = (123).

Let S be any set. If σ and τ are disjoint cycles in Sym(S), then $\sigma \tau = \tau \sigma$.

Proof: Let $\sigma = (a_1 \cdots a_k)$ and $\tau = (b_1 \cdots b_m)$ be disjoint.

If i < k, then $\sigma \tau(a_i) = \sigma(a_i) = a_{i+1} = \tau(a_{i+1}) = \tau(\sigma(a_i)) = \tau \sigma(a_i)$.

If
$$i = k$$
, then $\sigma \tau(a_k) = \sigma(a_k) = a_1 = \tau(a_1) = \tau(\sigma(a_k)) = \tau \sigma(a_k)$.

If
$$j < m$$
, then $\sigma \tau(b_j) = \sigma(b_{j+1}) = b_{j+1} = \tau(b_j) = \tau(\sigma(b_j)) = \tau \sigma(b_j).$

If j = m, then $\sigma \tau(b_m) = \sigma(b_1) = b_1 = \tau(b_m) = \tau(\sigma(b_m)) = \tau \sigma(b_m)$.

For any c not appearing in either cycle, we have $\sigma\tau(c) = c = \tau\sigma(c)$.

Product

Taking the composition of $\sigma \in \text{Sym}(S)$ with itself *i* times is a permutation: $\sigma^i = \sigma \sigma \cdots \sigma$.

Define $\sigma^0 := (1) = 1_S$ and $\sigma^{-n} := (\sigma^n)^{-1}$. For all integers m, n, we have $\sigma^m \sigma^n = \sigma^{m+n}$ and $(\sigma^m)^n = \sigma^{mn}$.

Every permutation $\sigma \in S_n$ can be written as a product of disjoint cycles. And the cycles of length ≥ 2 that appear in the product are unique.

Proof: Consider $\sigma^0(1) = 1, \sigma(1), \sigma^2(1), \ldots$: since S has only n elements, we can find the least positive exponent r such that

$$\sigma^r(1)=1.$$

Then $1, \sigma(1), \ldots, \sigma^{r-1}(1)$ are all distinct, giving us a cycle of length r: $(1 \sigma(1) \sigma^2(1) \cdots \sigma^{r-1}(1)).$ (*)

If r < n, let a be the least integer not in (*) and form the cycle (a $\sigma(a) \sigma^2(a) \cdots \sigma^{s-1}(a)$)

in which *s* is the least positive integer such that $\sigma^{s}(a) = a$. If r + s < n, we continue in this way until we have exhausted *S*. Shaoyun Yi Permutations Summ Every $\sigma \in S_n$ can be written as a unique product of disjoint cycles.

We actually give an algorithm in the proof for finding the necessary cycles.

Example 4

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 7 & 6 & 3 & 8 & 1 & 4 \end{pmatrix} = (1537)(468).$$

Example 5

Let $\sigma = (25143)$ and $\tau = (462)$ be in S₆. Then we have $\sigma \tau = (1465)(23)$.

Order of a Permutation

If $\sigma = (a_1 \cdots a_m)$ is a cycle of length m, then $\sigma^m(a_i) = a_i$ for $i = 1, \ldots, m$. Thus $\sigma^m = (1)$. And m is the smallest positive power of σ that equals (1).

The least positive integer *m* such that $\sigma^m = (1)$ is called the **order** of σ .

In particular, a cycle of length m has order m.

Let $\sigma \in S_n$ have order *m*. Then $\sigma^i = \sigma^j$ if and only if $i \equiv j \pmod{m}$.

Proof: (
$$\Rightarrow$$
) $\sigma^{i-j} = (1)$, write $i - j = mq + r$ with $0 \le r < m$. So

$$(1) = \sigma^{mq+r} = (\sigma^m)^q \sigma^r = \sigma^r \quad \Rightarrow r = 0.$$
[Why?]

(\Leftarrow) Write i = j + mk with $k \in \mathbf{Z}$. Hence $\sigma^i = \sigma^{j+mk} = \sigma^j$.

Let $\sigma \in S_n$ be written as a product of disjoint cycles. Then the order of σ is the least common multiple of the lengths (orders) of its disjoint cycles.

e.g., (1537)(284) has order 12 in S_8 ; (153)(284697) has order 6 in S_9 .

Shaoyun Yi

We merely reverse the order of the cycle to compute the inverse of a cycle:

$$(a_1a_2\cdots a_r)(a_ra_{r-1}\cdots a_1)=(1).$$

e.g., Let $\sigma = (1537) \in S_8$. Then $\sigma^{-1} = (7351) = (1735)$.

The inverse of the product $\sigma\tau$ of two permutations is $\tau^{-1}\sigma^{-1}$.

Proof: $(\sigma\tau)(\tau^{-1}\sigma^{-1}) = \sigma(\tau\tau^{-1})\sigma^{-1} = \sigma(1)\sigma^{-1} = \sigma\sigma^{-1} = (1).$ Thus for two cycles $(a_1 \cdots a_r)$ and $(b_1 \cdots b_m)$ we have $[(a_1 \cdots a_r)(b_1 \cdots b_m)]^{-1} = (b_m \cdots b_1)(a_r \cdots a_1).$

Moreover, if these two cycles are disjoint, then they commute. And so $[(a_1 \cdots a_r)(b_1 \cdots b_m)]^{-1} = (b_m \cdots b_1)(a_r \cdots a_1) = (a_r \cdots a_1)(b_m \cdots b_1).$

Example 6

$$\sigma = (123), \tau = (456): (\sigma \tau)^{-1} = (654)(321) = (321)(654) = (132)(465)$$

Transposition

A cycle (a_1a_2) of length two is called a **transposition**.

Any $\sigma \in S_n$ $(n \ge 2)$ can be written as a product of transpositions.

Proof: Since any $\sigma \in S_n$ can be expressed as a product of disjoint cycles. \rightsquigarrow To show that any cycle can be expressed as a product of transpositions. The identity (1) = (12)(21). For any other $\sigma \neq (1)$, we have

$$\begin{aligned} (a_1a_2\cdots a_{r-1}a_r) = & (a_{r-1}a_r)(a_{r-2}a_r)\cdots (a_3a_r)(a_2a_r)(a_1a_r) & (\star) \\ = & (a_1a_2)(a_2a_3)\cdots (a_{r-2}a_{r-1})(a_{r-1}a_r). & (\star\star) \end{aligned}$$

The way to write a product of transpositions is not unique.

Example 7

$$(25378) \stackrel{(\star)}{=} (78)(38)(58)(28) \stackrel{(\star\star)}{=} (25)(53)(37)(78).$$
$$(1) = (123) \cdot (132) \stackrel{(\star\star)}{=} (12)(23) \cdot (13)(32) \stackrel{(\star)}{=} (23)(13) \cdot (32)(12).$$

Shaoyun Yi

Even/Odd Permutations

$$(123) \stackrel{(\star)}{=} (23)(13) \stackrel{(\star\star)}{=} (12)(23)$$
, we also have $(123) = (12)(13)(12)(13)$.

If a permutation is written as a product of transpositions in two ways, then the number of transpositions is either even or odd in both cases.

Proof: See next slide.

A permutation σ is called even if it can be written as a product of an even number of transpositions. odd if it can be written as a product of an odd number of transpositions.

For example, (12) and (1234) $\stackrel{(\star)}{=}$ (34)(24)(14) $\stackrel{(\star\star)}{=}$ (12)(23)(34) are odd; (123) and (25378) $\stackrel{(\star)}{=}$ (78)(38)(58)(28) $\stackrel{(\star\star)}{=}$ (25)(53)(37)(78) are even; The identity (1) is even since (1) = (12)(21).

A cycle of odd length is even. & A cycle of even length is odd.

If σ is an even (resp. odd) permutation, then σ^{-1} is also even (resp. odd).

Proof of " $\sigma \in S_n$ is either even or odd"

Proof by contradiction: Suppose that σ can be both even and odd, i.e.,

 $\sigma = \tau_1 \cdots \tau_{2m} = \delta_1 \cdots \delta_{2n+1}, \quad \tau_i, \delta_j \text{ are transpositions.}$

Observe that $\delta_j = \delta_j^{-1}$, we have $\sigma^{-1} = \delta_{2n+1}^{-1} \cdots \delta_1^{-1} = \delta_{2n+1} \cdots \delta_1$, and so

(1) = $\sigma \sigma^{-1} = \tau_1 \cdots \tau_{2m} \delta_{2n+1} \cdots \delta_1$. \Rightarrow (1) is odd.

Assume $(1) = \rho_1 \cdots \rho_k$ $(k \ge 3)$ has the *shortest* product of transpositions. Assume $\rho_1 = (ab)$. Then *a* must appear in at least one other transposition, say ρ_i , with i > 1. Otherwise, $\rho_1 \cdots \rho_k(a) = a = b$, which is impossible. Among all products of length *k* that are equal to (1), and $\rho_1 = (ab)$, we assume that $\rho_1 \cdots \rho_k$ has the fewest number of *a*'s.

Let a, u, v, w be distinct: (uv)(aw) = (aw)(uv) and (uv)(av) = (au)(uv).

Thus we can move a transposition with entry *a* to the 2nd position without changing the number of *a*'s that appear. Say $\rho_2 = (ac)$ with $c \neq a$.

If
$$c = b$$
, then $\rho_1 \rho_2 = (1)$, and so $(1) = \rho_3 \cdots \rho_k$. (contradiction)
If $c \neq b$, $(ab)(ac) = (ac)(bc) \Rightarrow (1) = (ac)(bc)\rho_3 \cdots \rho_k$. (contradiction)
Shavun Yi