§3.8 Cosets, Normal Subgroups, and Factor Groups

Shaoyun Yi

MATH 546/701I

University of South Carolina

Summer 2021

Review

- $\phi: G_1 \to G_2$ is a group homomorphism if $\phi(a * b) = \phi(a) \cdot \phi(b)$.
- $\phi(a^n) = (\phi(a))^n$ for all $a \in G_1$ and all $n \in \mathbb{Z}$. e.g., n = 0 & n = -1
- If o(a) = n in G_1 , then $o(\phi(a))$ in G_2 is a divisor of n.
- ϕ is onto: if G_1 is abelian (cyclic), then G_2 is also abelian (cyclic).
- If $G_1 = \langle a \rangle$ is cyclic, then ϕ is completely determined by $\phi(a)$.
- $\ker(\phi) = \{x \in G_1 \mid \phi(x) = e_2\} \subseteq G_1 \& \operatorname{im}(\phi) = \{\phi(x) \mid x \in G_1\} \subseteq G_2$
- ϕ is one-to-one $\Leftrightarrow \ker(\phi) = \{e_1\}$ & ϕ is onto $\Leftrightarrow \operatorname{im}(\phi) = G_2$
- Homorphisms between cyclic gps: $Z_n \to Z_k$, $Z \to Z$, $Z \to Z_n$, $Z_n \to Z$
- Normal subgroup H of G: If $ghg^{-1} \in H$ for all $h \in H$ and $g \in G$.
 - i) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 .
 - ii) If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .
 - iii) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of G_1 .
 - iv) If H_2 is normal in G_2 , then $\phi^{-1}(H_2)$ is normal in G_1 .
- Fundamental Homomorphism Thm $G_1/\ker(\phi) = G_1/\phi \cong \operatorname{im}(\phi)$
 - \rightarrow Reprove "Every cyclic group G is isomorphic to either **Z** or **Z**_n".

Summer 2021

Another Equivalence Relation

Recall the proof of Lagrange's thm: Let H be a subgroup of the group G. For $a,b\in G$ define $a\sim b$ if $ab^{-1}\in H$. Then \sim is an equivalence relation. Moreover, we write the congruence class [a]=Ha.

For $a, b \in G$ define $a \sim b$ if $a^{-1}b \in H$. Then \sim is an equivalence relation.

Proof: Reflexive $(a \sim a)$: $a^{-1}a \in H$ since $e \in H$.

Symmetric $(a \sim b \rightsquigarrow b \sim a)$: $b^{-1}a = (a^{-1}b)^{-1} \in H$ since $a^{-1}b \in H$.

Transitive $(a \sim b \& b \sim c \rightsquigarrow a \sim c)$: $a^{-1}c = (a^{-1}b)(b^{-1}c) \in H$ [Why?]

As a consequence, we write the congruence class [a] = aH in this case.

TFAE: 1) bH = aH; 2) $bH \subseteq aH$; 3) $b \in aH$; 4) $a^{-1}b \in H$.

Proof: 1) \Rightarrow 2) \checkmark 2) \Rightarrow 3) $b = be \checkmark$ 3) \Rightarrow 4) $b = ah \rightsquigarrow a^{-1}b = h \in H$

4) \Rightarrow 1) Write $a^{-1}b = h \in H$, then b = ah and $a = bh^{-1}$. $bH \subseteq aH \checkmark$ $aH \subseteq bH \checkmark$

 \rightarrow Define $a \sim b$ if aH = bH. Then \sim is an equivalence relation on G.

Similarly, **TFAE**: 1) Hb = Ha; 2) $Hb \subseteq Ha$; 3) $b \in Ha$; 4) $ba^{-1} \in H$.

Cosets

Let H be a subgroup of the group G, and let $a \in G$.

The **left coset** of H in G determined by a is $aH = \{x \mid x = ah, h \in H\}$. The **right coset** of H in G determined by a is $Ha = \{x \mid x = ha, h \in H\}$.

The number of left cosets of H in G is called the index of H in G, and is denoted by [G:H]. This index also equals the number of right cosets since

There is a one-to-one correspondence between left cosets and right cosets.

Proof: Let
$$\mathcal{R} = \{Ha\}$$
, $\mathcal{L} = \{aH\}$. Define $\phi : \mathcal{R} \to \mathcal{L}$ by $\phi(Ha) = a^{-1}H$. well-defined: If $Ha = Hb$, then $ba^{-1} \in H \leadsto ab^{-1} \in H \leadsto a^{-1}H = b^{-1}H$ one-to-one: $\phi(Ha) = \phi(Hb) \leadsto a^{-1}H = b^{-1}H \leadsto ba^{-1} \in H \leadsto Ha = Hb$ onto: For any $aH \in \mathcal{L}$, we have $\phi(Ha^{-1}) = (a^{-1})^{-1}H = aH$.

The left coset aH has the same number of elements as H.

Proof: Define $f: H \to aH$ by f(h) = ah for all $h \in H$. $\leadsto f$ is 1-to-1 and onto. \square \leadsto If G is a finite group, then the index [G: H] = |G|/|H|.

Example: List the left cosets of a given subgroup H of a finite group.

Algorithm (also works for listing the right cosets of H):

- 1) If $a \in H$, then aH = H. So we begin by choosing any element $a \notin H$.
- 2) Any element in aH determines the same coset, so for the next coset we choose any element not in H or aH (if possible).
- 3) Continuing in this process provides a method for listing all left cosets.

Let
$$G = \mathbf{Z}_{11}^{\times} = \{[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]\} \ \& \ H = \{[1], [10]\}.$$

- i) The first coset is H itself, i.e., $[1]H = \{[1], [10]\}.$
- ii) Choosing $[2] \notin H$, we obtain $[2]H = \{[2], [9]\}$.
- iii) Choosing [3] $\notin H \cup [2]H$, we obtain [3] $H = \{[3], [8]\}$.
- iv) Choosing $[4] \notin H \cup [2]H \cup [3]H$, we obtain $[4]H = \{[4], [7]\}$.
- v) Choosing [5] $\notin H \cup [2]H \cup [3]H \cup [4]H$, we obtain [5] $H = \{[5], [6]\}$.

Thus the left cosets of H are H, [2]H, [3]H, [4]H, [5]H, and [G:H]=5.

Q: what if $N = \langle [3] \rangle = \{[1], [3], [9], [5], [4] \}$? **A:** N, [2]N, and [G:N] = 2.

Example: Non-abelian Group $G = S_3$

Let $G = S_3 = \{e, a, a^2, b, ab, a^2b\}$, where $a^3 = e, b^2 = e$, and $ba = a^2b$.

Let $H = \{e, b\}$.

The left cosets of H: $H = \{e, b\}, aH = \{a, ab\}, a^2H = \{a^2, a^2b\}.$

The right cosets of H: $H = \{e, b\}$, $Ha = \{a, a^2b\}$, $Ha^2 = \{a^2, ab\}$.

In this case, the left and right cosets are not the same.

Let $N = \{e, a, a^2\}$.

The left cosets of N: $N = \{e, a, a^2\}$, $bN = \{b, a^2b, ab\}$.

The right cosets of N: $N = \{e, a, a^2\}$, $Nb = \{b, ab, a^2b\}$.

In this case, the left and right cosets are the same.

A natural question: When are the left and right cosets of H in G the same?

Looking ahead: H is normal if and only if its left and right cosets coincide. In particular, for abelian groups, left cosets and right cosets are the same.

Recall that a subgroup H is normal if $ghg^{-1} \in H$ for all $h \in H$ and $g \in G$.

H is normal if and only if its left and right cosets coincide

Let H be a subgroup of the group G. The following conditions are equivalent:

- (1) H is a normal subgroup of G;
- (2) aH = Ha for all $a \in G$:
- (3) for all $a, b \in G$, abH is the set theoretic product (aH)(bH);
- (4) for all $a, b \in G$, $ab^{-1} \in H$ if and only if $a^{-1}b \in H$.

```
Proof: (1) \Rightarrow (2) Let a \in G, h \in H. Then aha^{-1} \in H [Why?] \rightsquigarrow aH \subseteq Ha
Similarly, a^{-1}ha = a^{-1}h(a^{-1})^{-1} \in H \rightsquigarrow Ha \subseteq aH. Thus aH = Ha.
(2) \Rightarrow (3) \ abH \subseteq (aH)(bH): Let h \in H, abh = (ae)(bh) \in (aH)(bH).
(aH)(bH) \subseteq abH: Let (ah_1)(bh_2) \in (aH)(bH), for h_1, h_2 \in H. Then
```

- $(ah_1)(bh_2) = a(h_1b)h_2 \stackrel{(2)}{=} a(bh_3)h_2 = ab(h_3h_2) \in abH$ for some $h_3 \in H$. (3) \Rightarrow (1) For any $a \in G$, $h \in H$, to show $aha^{-1} \in H$. Take $b = a^{-1}$ in (3),
- then $(aH)(a^{-1}H) = aa^{-1}H = H$. Thus $aha^{-1} = (ah)(a^{-1}e) \in H$.
- (2) \Leftrightarrow (4) The left cosets are the equivalence classes $[a] = \{b \mid a^{-1}b \in H\}$.

The right cosets are the equivalence classes $[a] = \{b \mid ab^{-1} \in H\}.$

Example: Normal Subgroups of $S_3 = D_3$

Let $G = S_3 = \{e, a, a^2, b, ab, a^2b\}$, where $a^3 = e, b^2 = e$, and $ba = a^2b$.

- ullet The trivial subgroup $\{e\}$ and the improper subgroup G are normal.
- 4 proper nontrivial subgroups of S_3 (each of b, ab, a^2b has order 2):

$$H = \{e, b\}, \quad K = \{e, ab\}, \quad L = \{e, a^2b\}, \quad N = \{e, a, a^2\}.$$
 $aH = \{a, ab\} \neq \{a, ba\} = Ha \text{ since } ba = a^2b. \implies H \text{ is not normal.}$
 $aK = \{a, a^2b\} \neq \{a, aba\} = Ka \text{ since } aba = b. \implies K \text{ is not normal.}$
 $aL = \{a, b\} \neq \{a, a^2ba\} = La \text{ since } a^2ba = ab. \implies L \text{ is not normal.}$
 $bN = \{b, ba, ba^2\} \stackrel{!}{=} \{b, ab, a^2b\} = Nb. \implies N \text{ is normal.}$ [Why?]
In conclusion, N is the only proper nontrivial normal subgroup of S_3 .

Let H be a subgroup of G with [G:H]=2. Then H is normal.

Proof: H has only two left cosets. These must be H and G - H. [Why?] And these must also be the right cosets. [Why?] Thus H is normal. e.g., In S_3 , the subgroup $N = \{e, a, a^2\}$ has index 2, and so N is normal. Conversely not true: Easy to find a counterexample from abelian groups.

Example: Normal Subgroups of D_4

$$G = D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$$
, where $a^4 = e, b^2 = e, ba = a^{-1}b$.

Refer to the subgroup diagram of D_4 in §3.6, slide #10.

- ullet The trivial subgroup $\{e\}$ and the improper subgroup G are normal.
- The subgroups $\{e, a^2, b, a^2b\}, \{e, a, a^2, a^3\}, \{e, a^2, ab, a^3b\}$ are normal.
- $\bullet \ N=\{e,a^2\}, \ \ H=\{e,b\}, \ \ K=\{e,a^2b\}, \ \ L=\{e,ab\}, \ \ M=\{e,a^3b\}.$

Among the subgroups N, H, K, L, M, only the subgroup N is normal.

None of the subgroups H, K, L, M is normal: e.g., by direct computations,

$$aH \neq Ha$$
, $aK \neq Ka$, $aL \neq La$, $aM \neq Ma$.

N is normal: Even better, $N = \{e, a^2\}$ commutes with every element of G. a^2 commutes with b: $ba^2 = (ba)a = (a^{-1}b)a = a^{-1}(ba) = a^{-2}b = a^2b$.

And since a^2 commutes with powers of a, it commutes with every element.

This implies that the left and right cosets of N coincide. $\rightsquigarrow N$ is normal.

Factor Group

If N is a normal subgroup of G, then the set of left cosets of N forms a group under the coset multiplication given by aNbN = abN for $a, b \in G$. This group is called the **factor group** of G determined by N. Write G/N.

Proof: well-defined: For aN = cN and bN = dN, to show abN = cdN. It suffices to show $(ab)^{-1}cd \in N$. [Why?] Since $a^{-1}c \in N$ and $b^{-1}d \in N$, $(ab)^{-1}cd = b^{-1}(a^{-1}c)d = \underbrace{b^{-1}d}_{CN} \underbrace{(d^{-1}(a^{-1}c)d)}_{CN} \in N$.

associativity: Let $a, b, c \in G$. Then $(aNbN)cN = \cdots = aN(bNcN)$. identity: eN = N is identity element. For $a \in G$, eNaN = aN, aNeN = aN. inverses: The inverse of aN is $a^{-1}N$. $aNa^{-1}N = N$, $a^{-1}NaN = N$.

Let N be a normal subgroup of the finite group G. If $a \in G$, then the order of aN is the smallest positive integer n such that $(aN)^n = a^n N = N$. That is, the order of aN is the smallest positive integer n such that $a^n \in N$.

Example

Abelian group (G, +): Any subgroup is normal & "aN" $\rightsquigarrow a + N$.

Let $G = \mathbf{Z}_{12}$, and let $N = \{[0], [3], [6], [9]\} = \langle [3] \rangle$. N is normal.

- \rightsquigarrow There are three elements of G/N, i.e., three left cosets of N in G:
 - i) The first element is $N = [0] + N = \{[0], [3], [6], [9]\};$
 - ii) Choose $[1] \notin N$, we obtain $[1] + N = \{[1], [4], [7], [10]\}$;
- iii) Choose $[2] \notin N \cup [1] + N$, we obtain $[2] + N = \{[2], [5], [8], [11]\}$.

Since the factor group G/N has order 3, we have $G/N \cong \mathbf{Z}_3$. [Why?]

Alternatively, this can also be seen by considering the order of [1] + N.

$$2([1] + N) = 2[1] + N = [2] + N, \quad 3([1] + N) = [3] + N = N.$$

I.e., the order of [1] + N is the smallest positive integer n s.t. $n[1] \in N$.

Thus n = 3 implies that [1] + N has order 3. $\rightsquigarrow G/N = \langle [1] + N \rangle \cong \mathbb{Z}_3$

Example: $D_4/Z(D_4)\cong \mathbf{Z}_2\times \mathbf{Z}_2$

$$G = D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$$
, where $a^4 = e, b^2 = e, ba = a^{-1}b$.
Let $N = \{e, a^2\}$ be the center $Z(D_4)$ of D_4 . (See slide #9)

The factor group G/N consists of the four cosets. More precisely,

$$N = \{e, a^2\}, \quad aN = \{a, a^3\}, \quad bN = \{b, a^2b\}, \quad abN = \{ab, a^3b\}.$$

Recall that the group of order 4 is isomorphic to either \mathbf{Z}_4 or $\mathbf{Z}_2 \times \mathbf{Z}_2$.

Since we have

- $(aN)^2 = a^2N = N$
- $(bN)^2 = b^2N = N$
- $(abN)^2 = (ab)^2N = ababN = a(ba)bN = aa^{-1}bbN = N$

This shows that every non-identity element of G/N has order 2. That is,

$$D_4/Z(D_4)\cong \mathbf{Z}_2\times \mathbf{Z}_2.$$

Another way to show that each of $\{aN, bN, abN\}$ has order 2 in G/N.

$$o(xN) = \min\{n > 0 \mid x^n \in N\}$$
 for any $xN \in G/N$.

Three Examples from $G = \mathbf{Z}_4 \times \mathbf{Z}_4$

$$H = \{([0], [0]), ([2], [0]), ([0], [2]), ([2], [2])\}:$$
 There are four cosets of H $H, \quad ([1], [0]) + H, \quad ([0], [1]) + H, \quad ([1], [1]) + H.$

$$G/H \cong \mathbf{Z}_2 \times \mathbf{Z}_2$$

Proof: Each nontrivial element of the factor group has order 2.

$$\mathcal{K} = \{([0],[0]),([1],[0]),([2],[0]),([3],[0])\} \colon \text{ There are four cosets of } \mathcal{K} \\ \mathcal{K},\quad ([0],[1])+\mathcal{K},\quad ([0],[2])+\mathcal{K},\quad ([0],[3])+\mathcal{K}.$$

$$G/K \cong \mathbf{Z}_4$$

Proof:
$$o(([0],[1]) + K) = 4 = |G/K|$$
.

 $N = \{([0], [0]), ([1], [1]), ([2], [2]), ([3], [3])\}:$ There are four cosets of N $N, \quad ([1], [0]) + N, \quad ([2], [0]) + N, \quad ([3], [0]) + N.$

$$G/N\cong \mathbf{Z}_4$$

Proof:
$$o(([1],[0]) + N) = 4 = |G/N|$$
.

Natural Projection

Let N be a normal subgroup of G. The mapping $\pi:G\to G/N$ defined by

$$\pi(a) = aN$$
, for all $a \in G$, (\star)

is called the **natural projection** of G onto G/N.

Recall that the kernel of any group homomorphism is a normal subgroup.

The converse is true: Any normal subgroup is the kernel of some homomorphism.

Let N be a normal subgroup of G. Let $\pi \colon G \to G/N$ be defined as in (\star) .

- i) Then π is a group homomorphism with $\ker(\pi) = N$. Direct check \checkmark
- ii) There is a one-to-one correspondence between

{subgroups
$$H$$
 of G with $H \supseteq N$ } \longleftrightarrow {subgroups K of G/N }
$$\begin{array}{ccc}
H & \longmapsto & \pi(H) \\
\pi^{-1}(K) & \longleftarrow & K
\end{array}$$

Under this correspondence, normal subgroups \longleftrightarrow normal subgroups.

Proof: {subgroups H of G with $H \supseteq N$ } \longleftrightarrow {subgroups K of G/N}

$$\begin{array}{ccc} H & \longmapsto & \pi(H) \\ \pi^{-1}(K) & \longleftarrow & K \end{array}$$

Let N be a normal subgroup of G. The **natural projection** $\pi: G \to G/N$ defined by $\pi(a) = aN$ is an onto group homomorphism with $\ker(\pi) = N$.

Assigning to each subgroup K of G/N its inverse image $\pi^{-1}(K)$ in G is a one-to-one mapping since π is onto. To show that this mapping is onto.

Let H be a subgroup of G with $H \supseteq N$. To show $H = \pi^{-1}(\pi(H))$.

$$\pi^{-1}(\pi(H)) = \{x \in G \mid \pi(x) \in \pi(H)\} \quad \rightsquigarrow H \subseteq \pi^{-1}(\pi(H))$$

To show $\pi^{-1}(\pi(H)) \subseteq H$: Let $a \in \pi^{-1}(\pi(H))$. Then $\pi(a) \in \pi(H)$, and so aN = hN for some $h \in H$. $\leadsto h^{-1}a \in N \subseteq H$.

Thus
$$a = h(h^{-1}a) \in H$$
.

Fundamental Homomorphism Theorem

If $\phi: G_1 \to G_2$ is a homomorphism with $K = \ker(\phi)$, then $G_1/K \cong \phi(G_1)$.

Proof: Recall that the kernel $K = \ker(\phi)$ is a normal subgroup of G_1 .

Define $\overline{\phi}: G_1/K \to \phi(G_1)$ by $\overline{\phi}(aK) = \phi(a)$ for all $aK \in G_1/K$. To show

 $\overline{\phi}$ is a group isomorphism.

well-defined: If aK = bK, then a = bk for some $k \in \ker(\phi)$. Therefore,

$$\overline{\phi}(aK) = \phi(a) = \phi(bk) = \phi(b)\phi(k) = \phi(b) = \overline{\phi}(bK).$$

 $\overline{\phi}$ is a homomorphism: For all $a, b \in G_1$, we have

$$\overline{\phi}(\mathsf{a}\mathsf{K}\mathsf{b}\mathsf{K}) = \overline{\phi}(\mathsf{a}\mathsf{b}\mathsf{K}) = \phi(\mathsf{a}\mathsf{b}) = \phi(\mathsf{a})\phi(\mathsf{b}) = \overline{\phi}(\mathsf{a}\mathsf{K})\overline{\phi}(\mathsf{b}\mathsf{K}).$$

one-to-one: If $\overline{\phi}(aK) = \overline{\phi}(bK)$, i.e., $\phi(a) = \phi(b)$, then $\phi(b^{-1}a) = \cdots = e_2$

This implies that $b^{-1}a \in K$, and so aK = bK.

onto: It is clear by definition of ϕ .

Examples

Cayley's theorem: Every group *G* is isomorphic to a permutation group.

Proof: Define $\phi: G \to \operatorname{Sym}(G)$ by $\phi(a) = \lambda_a$, for any $a \in G$, where λ_a is the function defined by $\lambda_a(x) = ax$ for all $x \in G$. ϕ is a homomorphism:

For all
$$a, b \in G$$
, $\phi(ab) = \lambda_{ab} \stackrel{!}{=} \lambda_a \lambda_b = \phi(a)\phi(b)$.
For all $x \in G$, $\lambda_{ab}(x) = abx = \lambda_a(bx) = \lambda_a \lambda_b(x)$.

one-to-one: λ_a is the identity permutation only if a = e. So $\ker(\phi) = \{e\}$.

It follows Fundamental Homomorphism Theorem that

$$G/\ker(\phi) = G \cong \phi(G),$$

where $\phi(G)$ is a permutation group since it is a subgroup of Sym(G).

$$\mathrm{GL}_n(\mathsf{R})/\mathrm{SL}_n(\mathsf{R})\cong \mathsf{R}^{\times}$$

Proof: Define $\phi : GL_n(\mathbf{R}) \to \mathbf{R}^{\times}$ by $\phi(A) = \det(A)$ for any $A \in GL_n(\mathbf{R})$. ϕ is well-defined. $\checkmark \phi$ is a homomorphism. $\checkmark \phi$ is onto: \checkmark [Why?]

$$\ker(\phi) = \{A \mid \phi(A) = \det(A) = 1\} = \operatorname{SL}_n(\mathbf{R}).$$

Simple Group

Let $\phi: G_1 \to G_2$ be a group homomorphism. Two special cases:

- ϕ is one-to-one $\Leftrightarrow \ker(\phi) = \{e_1\}$. Thus $G_1 \cong \phi(G_1)$ in this case.
- If $\ker(\phi) = G_1$, then ϕ is the trivial mapping, i.e., $\phi(G_1) = \{e_2\}$.

If G_1 has no proper nontrivial normal subgroups, then ϕ is either 1-to-1 or trivial.

A nontrivial group G is called **simple** if it has no proper nontrivial normal subgps.

e.g., For any prime p, the cyclic group \mathbf{Z}_p is simple, since it has no proper nontrivial subgroups of any kind (every nonzero element is a generator).

An Useful Example: $\mathbf{Z}_n/m\mathbf{Z}_n\cong\mathbf{Z}_m$ if m|n|

The subgroups of \mathbf{Z}_n correspond to divisors of n, and so to describe all factor groups of \mathbf{Z}_n we only need to describe $\mathbf{Z}_n/m\mathbf{Z}_n$ for all m|n,m>0.

Proof: Since any homomorphic image of a cyclic group is again cyclic,

we can define $\phi: \mathbf{Z}_n \to \mathbf{Z}_m$ by $\phi([x]_n) = [x]_m$ for some m|n.

well-defined: If $[x]_n = [y]_n$, then $[x]_m = [y]_m$. [Why?]

 ϕ is a homomorphism: For any $[x]_n, [y]_n \in \mathbf{Z}_n$, we have

$$\phi([x]_n + [y]_n) = \phi([x + y]_n) = [x + y]_m = [x]_m + [y]_m = \phi([x]_n) + \phi([y_n]).$$

onto: It is clear by definition of ϕ .

$$\ker(\phi) = \{[x]_n \mid [x]_m = [0]_m\} = \{[x]_n \mid x \text{ is a multiple of } m\} = m\mathbf{Z}_n.$$

It follows from the fundamental homomorphism theorem that

$$Z_n/mZ_n \cong Z_m$$
.

Factor Groups of Direct Products

Let $N_1 \subseteq G_1$ and $N_2 \subseteq G_2$ be normal subgroups.

$$N_1 \times N_2 = \{(x_1, x_2) \mid x_1 \in N_1, x_2 \in N_2\} \subseteq G_1 \times G_2.$$

Then $N_1 \times N_2$ is a normal subgroup of the direct product $G_1 \times G_2$. [Why?]

$$(G_1 \times G_2)/(N_1 \times N_2) \cong (G_1/N_1) \times (G_2/N_2).$$
 (*)

Proof: Define $\phi: G_1 \times G_2 \to (G_1/N_1) \times (G_2/N_2)$ by $\phi((x_1, x_2)) = (x_1N_1, x_2N_2)$.

 ϕ is well-defined. $\checkmark \phi$ is a homomorphism: For $(x_1, x_2), (y_1, y_2) \in G_1 \times G_2$,

$$\phi((x_1,x_2)(y_1,y_2)) = \cdots = \phi((x_1,x_2))\phi((y_1,y_2))$$

 ϕ is onto. \checkmark $\ker(\phi) = \{(x_1, x_2) \mid \phi((x_1, x_2)) = (N_1, N_2)\} = N_1 \times N_2.$

The desired (\star) follow from the fundamental homomorphism theorem.

- e.g., the subgroups $H=2\mathbf{Z}_4\times 2\mathbf{Z}_4$ and $K=\mathbf{Z}_4\times \{[0]\}$ in $G=\mathbf{Z}_4\times \mathbf{Z}_4$.
 - $G/H = (\mathbf{Z}_4 \times \mathbf{Z}_4)/(2\mathbf{Z}_4 \times 2\mathbf{Z}_4) \cong (\mathbf{Z}_4/2\mathbf{Z}_4) \times (\mathbf{Z}_4/2\mathbf{Z}_4) \cong \mathbf{Z}_2 \times \mathbf{Z}_2$
 - $G/K = (Z_4 \times Z_4)/(Z_4 \times 4Z_4) \cong (Z_4/Z_4) \times (Z_4/4Z_4) \cong Z_1 \times Z_4 \cong Z_4$

Internal Direct Product

A group G with subgroups H and K is called the **internal direct product** of H and K if (i) H, K are normal in G (ii) $H \cap K = \{e\}$ (iii) HK = G. Prove that in this case $G \cong H \times K$.

Proof: Define $\phi: H \times K \to G$ by $\phi((h, k)) = hk$ for all $(h, k) \in H \times K$. ϕ well-defined. $\checkmark \phi$ is a homomorphism: For all $(h_1, k_1), (h_2, k_2) \in H \times K$, $\phi((h_1, k_1)(h_2, k_2)) = \phi((h_1h_2, k_1k_2))$

$$=h_1h_2k_1k_2\stackrel{!}{=}h_1k_1h_2k_2=\phi((h_1,k_1))\phi((h_2,k_2)).$$

holds
$$\Leftrightarrow h_2 k_1 = k_1 h_2 \Leftrightarrow k_1^{-1} h_2 k_1 h_2^{-1} = e$$
. To show $k_1^{-1} h_2 k_1 h_2^{-1} = e$.

Proof: $k_1^{-1}h_2k_1h_2^{-1} \in H$ since $k_1^{-1}h_2k_1 \in H$ [Why?] and $h_2^{-1} \in H$. $k_1^{-1}h_2k_1h_2^{-1} \in K$ since $h_2k_1h_2^{-1} \in K$, $k_1^{-1} \in K$. $\rightsquigarrow k_1^{-1}h_2k_1h_2^{-1} \in H \cap K = \{e\}$ \square

 ϕ is onto: For any $g \in G$, we have $g \stackrel{\text{(iii)}}{=} hk$ with $h \in H, k \in K$.

$$\ker(\phi) = \{(h,k) \mid \phi((h,k)) = e\} \stackrel{!}{=} \{(h,k) \mid h,k \in H \cap K\} = \{(e,e)\}$$

 $\stackrel{!}{=}$ holds since $hk = e \rightsquigarrow h = k^{-1} \in K \cap H \& k = h^{-1} \in H \cap K$