Homework 9

Due: June 21st (Monday), 11:59 pm

- Please submit your work on Blackboard.
- You are required to submit your work as a single pdf.
- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- There are five randomly picked questions (5 pts for each) that will be graded. (1), (2), (3), (5), (6)
- (1) (a) List all cosets of $\langle [16]_{24} \rangle$ in \mathbb{Z}_{24} .

Since $\gcd(16,24)=8$, we have $\langle [16]_{24}\rangle=\langle [8]_{24}\rangle=\{[0]_{24},[8]_{24},[16]_{24}\}.$ Thus,

$$\langle [8]_{24} \rangle = \{ [0]_{24}, [8]_{24}, [16]_{24} \} = \langle [16]_{24} \rangle$$

$$[1]_{24} + \langle [8]_{24} \rangle = \{ [1]_{24}, [9]_{24}, [17]_{24} \} = [1]_{24} + \langle [16]_{24} \rangle$$

$$[2]_{24} + \langle [8]_{24} \rangle = \{ [2]_{24}, [10]_{24}, [18]_{24} \} = [2]_{24} + \langle [16]_{24} \rangle$$

$$[3]_{24} + \langle [8]_{24} \rangle = \{ [3]_{24}, [11]_{24}, [19]_{24} \} = [3]_{24} + \langle [16]_{24} \rangle$$

$$[4]_{24} + \langle [8]_{24} \rangle = \{ [4]_{24}, [12]_{24}, [20]_{24} \} = [4]_{24} + \langle [16]_{24} \rangle$$

$$[5]_{24} + \langle [8]_{24} \rangle = \{ [5]_{24}, [13]_{24}, [21]_{24} \} = [5]_{24} + \langle [16]_{24} \rangle$$

$$[6]_{24} + \langle [8]_{24} \rangle = \{ [6]_{24}, [14]_{24}, [22]_{24} \} = [6]_{24} + \langle [16]_{24} \rangle$$

$$[7]_{24} + \langle [8]_{24} \rangle = \{ [7]_{24}, [15]_{24}, [23]_{24} \} = [7]_{24} + \langle [16]_{24} \rangle$$

(b) List all cosets of $\langle ([1]_3, [2]_6) \rangle$ in $\mathbb{Z}_3 \times \mathbb{Z}_6$.

Since $o(([1]_3, [2]_6))$ in $\mathbb{Z}_3 \times \mathbb{Z}_6$ is lcm[3, 3] = 3, we can calculate that

$$\langle ([1]_3,[2]_6)\rangle = \{([0]_3,[0]_6),([1]_3,[2]_6),([2]_3,[4]_6)\}.$$

And so the index is 6, that is, there are six cosets of $\langle ([1]_3, [2]_6) \rangle$ in $\mathbb{Z}_3 \times \mathbb{Z}_6$:

$$\langle ([1]_3, [2]_6) \rangle = \{ ([0]_3, [0]_6), ([1]_3, [2]_6), ([2]_3, [4]_6) \}$$

$$([0]_3, [1]_6) + \langle ([1]_3, [2]_6) \rangle = \{ ([0]_3, [1]_6), ([1]_3, [3]_6), ([2]_3, [5]_6) \}$$

$$([0]_3, [2]_6) + \langle ([1]_3, [2]_6) \rangle = \{ ([0]_3, [2]_6), ([1]_3, [4]_6), ([2]_3, [0]_6) \}$$

$$([0]_3, [3]_6) + \langle ([1]_3, [2]_6) \rangle = \{ ([0]_3, [3]_6), ([1]_3, [5]_6), ([2]_3, [1]_6) \}$$

$$([0]_3, [4]_6) + \langle ([1]_3, [2]_6) \rangle = \{([0]_3, [4]_6), ([1]_3, [0]_6), ([2]_3, [2]_6)\}$$

$$([0]_3, [5]_6) + \langle ([1]_3, [2]_6) \rangle = \{([0]_3, [5]_6), ([1]_3, [1]_6), ([2]_3, [3]_6)\}$$

(2) For each of the subgroups $\{e, a^2\}$ and $\{e, b\}$ of D_4 , list all left and right cosets.

$$D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$$
, where $a^4 = e, b^2 = 2$, and $ba = a^{-1}b = a^3b$.

(3) Prove that if N is a normal subgroup of G, and H is any subgroup of G, then $H \cap N$ is a normal subgroup of H.

Proof. Since we already know that $H \cap N$ is always a subgroup, we only need to prove that it is normal. For any $a \in H \cap N$ and any $h \in H$, we have

 $hah^{-1} \in H$ since $a \in H, h \in H$, and H is a subgroup.

 $hah^{-1} \in N$ since $a \in N$, and N is a normal subgroup of G.

This implies $hah^{-1} \in H \cap N$, and so $H \cap N$ is a normal subgroup of H.

(4) Let N be a normal subgroup of index m in G. Show that $a^m \in N$ for all $a \in G$.

Proof. By [G:N]=m, we know that the factor group G/N has order m. Then

$$(aN)^m = N$$
 for all $a \in G$.

It follows from the coset multiplication that $(aN)^m = a^m N = N$, i.e., $a^m \in N$.

(5) Let N be a normal subgroup of G. Show that the order of any coset aN in G/Nis a divisor of o(a), when o(a) is finite.

Proof. Let o(a) = n. Then we have $a^n = e$. We also see that

$$(aN)^n = a^n N = eN = N.$$

Then the order of aN in G/N is a divisor of n.

(6) Compute the factor group $(\mathbf{Z}_6 \times \mathbf{Z}_4)/\langle ([2]_6, [2]_4) \rangle$.

First, we observe that $o(([2]_6, [2]_4))$ in $\mathbb{Z}_6 \times \mathbb{Z}_4$ is lcm[3, 2] = 6. In particular,

$$\langle ([2]_6,[2]_4)\rangle = \{([0]_6,[0]_4),([2]_6,[2]_4),([4]_6,[0]_4),([0]_6,[2]_4),([2]_6,[0]_4),([4]_6,[2]_4)\}.$$

There are four elements in the factor group $(\mathbf{Z}_6 \times \mathbf{Z}_4)/\langle([2]_6,[2]_4)\rangle$:

$$\langle ([2]_6, [2]_4) \rangle = \{ ([0]_6, [0]_4), ([2]_6, [2]_4), ([4]_6, [0]_4), ([0]_6, [2]_4), ([2]_6, [0]_4), ([4]_6, [2]_4) \}$$

$$([0]_6,[1]_4) + \langle ([2]_6,[2]_4) \rangle = \{ ([0]_6,[1]_4), ([2]_6,[3]_4), ([4]_6,[1]_4), ([0]_6,[3]_4), ([2]_6,[1]_4), ([4]_6,[3]_4) \}$$

$$([1]_6,[0]_4)+\langle([2]_6,[2]_4)\rangle=\{([1]_6,[0]_4),([3]_6,[2]_4),([5]_6,[0]_4),([1]_6,[2]_4),([3]_6,[0]_4),([5]_6,[2]_4)\}$$

$$([1]_6,[1]_4)+\langle([2]_6,[2]_4)\rangle=\{([1]_6,[1]_4),([3]_6,[3]_4),([5]_6,[1]_4),([1]_6,[3]_4),([3]_6,[1]_4),([5]_6,[3]_4)\}$$

Let $G = \mathbf{Z}_6 \times \mathbf{Z}_4$ and let $N = \langle ([2]_6, [2]_4) \rangle$. Then the factor group G/N is

$$G/N = \{N, ([0]_6, [1]_4) + N, ([1]_6, [0]_4) + N, ([1]_6, [1]_4) + N\}.$$

It is clear that all the non-identity elements in G/N have order 2. In particular,

$$2([0]_6, [1]_4) = ([0]_6, [2]_4) \in N$$
$$2([1]_6, [0]_4) = ([2]_6, [0]_4) \in N$$
$$2([1]_6, [1]_4) = ([2]_6, [2]_4) \in N$$

In conclusion, the factor group $(\mathbf{Z}_6 \times \mathbf{Z}_4)/\langle([2]_6,[2]_4)\rangle$ is isomorphic to $\mathbf{Z}_2 \times \mathbf{Z}_2$.

(7) Show that $\mathbf{R}^{\times}/\langle -1 \rangle$ is isomorphic to the group of positive real numbers under multiplication.

Proof. Define $\phi: \mathbf{R}^{\times} \to \mathbf{R}^{+}$ by $\phi(x) = |x|$.

- (i) ϕ is well-defined: Trivial since |x| > 0 for all $x \in \mathbf{R}^{\times}$.
- (ii) ϕ is a homomorphism: For all $x, y \in \mathbf{R}^{\times}$, we have

$$\phi(xy) = |xy| = |x||y| = \phi(x)\phi(y).$$

- (iii) ϕ is onto: For any $x \in \mathbf{R}^+$, we have $\phi(x) = |x| = x$ since x > 0.
- (iv) $\ker(\phi) = \{x \in \mathbf{R}^{\times} \mid \phi(x) = |x| = 1\} = \{x \mid x = \pm 1\} = \{1, -1\} = \langle -1 \rangle.$

The desired results follow from the fundamental homomorphism theorem, i.e.,

$$\mathbf{R}^{\times}/\langle -1\rangle \cong \mathbf{R}^{+}.$$

(8) If N and M are normal subgroups of G, prove that NM is also a normal subgroup of G. (Note that you need to show that NM is a subgroup of G first.)

Optional: This is a bonus question. (5 points)

Proof. We are going to separate two steps to prove.

Claim 0.1. NM is a subgroup of G.

Proof of Claim 0.1. NM is nonempty since $e = ee \in NM$. For any $n_1m_1, n_2m_2 \in NM$ with $n_1, n_2 \in N$ and $m_1, m_2 \in M$, we need to show that $(n_1m_1)(n_2m_2)^{-1} \in NM$. In fact,

$$(n_1 m_1)(n_2 m_2)^{-1} = (n_1 m_1)(m_2^{-1} n_2^{-1})$$

$$= n_1 (m_1 m_2^{-1}) n_2^{-1}$$

$$= (n_1 n_2^{-1}) \cdot n_2 (m_1 m_2^{-1}) n_2^{-1} \stackrel{!}{\in} NM$$

holds since N is a subgroup of G and M is a normal subgroup of G.

Claim 0.2. NM is normal.

Proof of Claim 0.2. For any $nm \in NM$ and any $g \in G$, we have

$$gnmg^{-1} = (gng^{-1})(gmg^{-1}) \in NM$$

because N and M are normal subgroups of G. Hence proved.