Homework 6

Due: June 5th (Saturday), 11:59 pm

e Please submit your work on Blackboard.

e You are required to submit your work as a single pdf.

e Please make sure your handwriting is clear enough to read. Thanks.

e No late work will be accepted.

e There are five randomly picked questions (5 pts for each) that will be graded.

(2), (3), (4), (5), (6)

(1) Finish the proof of (%) in Lecture Slides §3.5, #14/18.
If Gi1 =2 Hy and Gy & Hy, then G7 x Gy = Hy X H,.
Let 6, : Gy — Hy and 0y : Go — Hy. Define ¢ : Gy x Gy — Hy x Hy by
d((x1,22)) = (01(x1), 02(x2)), for all (x1,22) € Gy X Ga.
Claim: ¢ is a group isomorphism.
(i) well-defined: Trivial since 0 (z1) € Hy and 02(x3) € Ho.
(i) ¢ respects the two operations: For any (x1,x2), (y1,y2) € G1 X Gy
O((x1, 22) (Y1, 92)) =0((21y1, T22))
=(01(x191), O2(72y2))
=(01(21)01(y1), O2(22)02(y2))
=(01(1), 02(2)) (01 (y1), 02(y2))
=o((71,22))¢((y1,42))
(iii) one-to-one: If ¢((x1,x2)) = (01(x1),02(x2)) = (en,,en,), then
01(z1) = ey, = 11 = eq,
Oy(x2) = em, = 2 = eq,
and so (21, 22) = (€c,,€Gy) = €6y xGa-
(iv) onto: Trivial since #; and 05 are two groups isomorphisms. In particular,

for any element (hq, hy) € Hy X Hy, we can always find 27 € Gy and x5 €
G5 such that 6;(z1) = hy and 6(x2) = hy, and so ¢((z1,x2)) = (hy, ha).

(2) Let G be a group and let a € G be an element of order 30. List the powers of
a that have order 2, order 3 or order 5.

Since o(a) = 30 = |{(a)|, then we have (a) = Zj,. In particular, you can
think about the cyclic subgroup (a) generated by a € G is the “multiplicative
version” of the additive group Zsg. Thus, we have

(a?) = {a?), where d = (4,30) and so o(a?) = |(a?)| = [{(a?)| = =

(i) o(a’) 2:%:d:(j,30):15:>j:15.
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: 30
(ii) o(aj):?):E = d = (j,30) = 10 = 5 = 10, 20.
: 30
(111)0(&3):5—61 d=(j,30) =6=7=06,12,18, 24.
(3) Give the subgroup diagrams of the following groups.

(a) Za

(b) Zss

24 = 2331 Any divisor d = 237, 36 = 223%: Any divisor d = 237,

where 1 =0,1,2,3 and 5 =0, 1. where 1 =0,1,2 and j = 0,1, 2.
2oy = 17y Zss = 1736

/N
\/
N
/

3Z24 Z 3Zs36 2736
6224 4Z24 9Z36 6Z36 4756
12224 8Z24 18Z36 12236
2475, = [0]24> [O 24} 36235 = <[ ] > [0]36}
4) Which of Zjy, Z3, are cyclic? (Do not use The Primitive Root Theorem.
187 420

(a) Check Z5 : ¢(18) = 18(1 — =)(1 — %) =6

23, = {[11, 5], 7), 1111, [13], (171} = (1], £[5], (7]}
(i) [5)2 = [25] = [7],[5]® = [35] = [—1], so o([5]) = 6 (Lagrange’s Thm).
This implies that Z7y = ([5]), and so Z7y is cyclic.
(b) Check Z3, : ¢(20) = 20(1 — 5)(1 - 3) =38

N | —

Z3, = {[1], (3], [7], [9], [11], [13], [17], [19]} = {=£[1], £[3], [ ], =91}
(i) [3]* = [9], [3]> = [27] = [7], [3]* = [21] = [1], s0 o([3]) =
(ii) There is no need to try [7],[9] since [7],[9] € ([3]).
(iii) [11] = [-9], [11]* = [-9]* = 1, s0 o([11]) = 2.
(iv) [13] = [-7],[13]* = [-7]* = [9], [13]* = [9]* = [1], so o([13]) = 4.

Why o([13]) # 37 Think about Lagrange’s Theorem!
(v) [17] = [=3], [17]* = [=3]* = 1, s0 o([17]) < 4 since o([17])]4.
(vi) [19] = [-1],[19]* = [-1]> = 1, so o([19]) = 2.

This implies that there is no element of order 8, and so ZJ, is not cyclic.
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(5) Prove that Zjj, is not isomorphic to Z7,. (Do not use The Primitive Root
Theorem.)

(a) Check 25 : (10) = 10(1 — %)(1 _ é) _4

Zio = {[1], 13, [7], [91} = {=[1], =31}
(i) [3]* = [9], so o([3]) = 4
This implies that Z;, = ([3]), and so Zj;, is cyclic.
(b) Check Zf; : (12) = 12(1 — )(1 ~ +) =4
Z7, = {[1], [5], [7), [11]} = {=[1], £[5]}
[5]* = [7)* = [11]* = [1]

This implies that there is no element of order 4, and so Z7, is not cyclic.

Thus we have Z;, % Z5.

(Lagrange’s Thm).

(6) You need to show work to support your conclusions.
(a) Is Z3 x Z3y isomorphic to Zg X Zq57 Yes!

We have Zg X Zgy = Zg x Zg X Zs (or you can write Zz X Zzg = Z3 X
Z2 X Z3 X Z5) and Z6 X Z15 = Z6 X Zg X Z5 (OI’ you can write Z6 X Z15 =
Z2 X Z3 X Z3 X Z5)

Consider the function ¢ : Z3 X ZG X Z5 — Z6 X Z3 X Z5 by

O(([z1]s, [x2]6, [23]5)) = ([22]6, [#1]5, [25]5)

for any element ([z1]s, [x2]s, [r3]5) € Zs X Zg X Zs. It is obvious that ¢ is
an isomorphism. Thus, we prove that Zs X Zsg = Zg X Zq5.

Or you can consider ¢ : Zz X Zig X Zizg X Zis — Zio X Zis X 43 X Zi5 by ...

(b) Is Zg X Zy4 isomorphic to Zg X Zy;? No!
WehaveZ9><214%“ZgXngZ7andZ6><Zgl§Z6><Z3><Z7%“
ZQXZgXZgXZ7.

It shows that the first has an element of order 9, while the second has
none. Thus we have Zg X Zyy % Zg X Zo;.

100
(7) Let G be the set of all 3 x 3 matrices of the form |a 1 0|. Show that if

b ¢ 1

a,b,c € Zs, then G is a group with exponent 3.

For any a,b, c € Z3, we have

(10 01> [t oo0][t oo 1 00

a 1 0 =]a 1 0] [a 1 0f = 2a 1 0

b ¢ 1) b ¢ 1] |b 1 2b+ac 2c¢ 1

1 00]° [too][ 1 00 1 0 0

a 1 0 =]a 1 0 2a 1 0f = 3a 1 0 =13

b ¢ 1] b ¢ 1] [204ac 2¢ 1 30+ 3ac 3c 1
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(8)

Prove that any cyclic group with more than two elements has at least two
different generators.

If G is an infinite cyclic group, then G = Z. And we know that 1 and —1 are
the only two generators for Z. That is, Z = (1) = (—1).

If G is a finite cyclic group with |G| = n > 2, then G = Z,,. Also we know
that at least [1],, and [—1],, are generators for Z, since they are units in Z,,
ie., [1],, [~1], € Z¥. And [1],, # [—1], if n > 2. This completes the proof.

Or proof by contradiction: Let G = (a) for some element a # e. Suppose that
a is the only generator of the group G. However, we also know that G = (a™!).
Since a is the only generator of G by assumption, we have

a=a"t=a?=e = o(a) = |{(a)| = |G| = 2 since a # e, a contradiction.
Thus, G has at least two different generators.

Let G be any group with no proper, nontrivial subgroups, and assume that G
has more than one element. Prove that G must be isomorphic to Z, for some
prime p.

Optional: This is a bonus question. (5 points)

Assume that the only subgroups of G are the trivial subgroup {e} and itself.

Since |G| > 1, there exists a non-identity element a € G. Then we have
G = (a) since (a) is a subgroup of G but not {e}, and so G is cyclic.

Moreover, G is a finite cyclic group. Otherwise, (a*) is a proper, nontrivial
subgroup of G = (a) for any positive integer k, a contradiction.

Let |G| = n > 1. And so we have G = Z, since G is cyclic. In particular,
for each divisor d of n, there exists a (unique) subgroup H of order d since G
is a finite cyclic group. By assumption, d has only two possibilities, that is,
d =1 or d =n. This implies that n has to be a prime number p. Therefore,
G =17,



