Homework 5

Due: June 2nd (Wednesday), 11:59 pm

- Please submit your work on Blackboard.
- You are required to submit your work as a single pdf.
- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- There are five randomly picked questions (5 pts for each) that will be graded. (1), (3), (5), (6), (7)
- (1) Show that the multiplicative group \mathbf{Z}_7^{\times} is isomorphic to the additive group \mathbf{Z}_6 . Define a function $\phi : \mathbf{Z}_6 \to \mathbf{Z}_7^{\times}$ by letting $\phi([n]_6) = [3]_7^n$ since $\mathbf{Z}_7^{\times} = \langle [3]_7 \rangle$.
 - If $[n_1] = [n_2]$, i.e., $n_1 \equiv n_2 \pmod{6}$, then $[3]_7^{n_1} = [3]_7^{n_2}$ since $o([3]_7) = 6$. This implies that $\phi([n_1]_6) = \phi([n_2]_6)$. Thus, ϕ is well-defined.
 - For any two elements $[m]_6, [n]_6 \in \mathbb{Z}_6$, we have $\phi([m]_6 + [n]_6) = \phi([m+n]_6) = [3]_7^{m+n} = [3]_7^m \cdot [3]_7^n = \phi([m]_6) \cdot \phi([n]_6).$ Thus, ϕ respects the two operations.
 - If $\phi([n]_6) = [3]_7^n = [1]_7$, then 6|n since $o([3]_7) = 6$. So $[n]_6 = [0]_6$. Thus ϕ is one-to-one.
 - Since $|\mathbf{Z}_6| = |\mathbf{Z}_7^{\times}| = 6$, any any one-to-one mapping must be onto.

Thus, ϕ is an isomorphism.

(2) Show that the multiplicative group \mathbf{Z}_8^{\times} is isomorphic to the group $\mathbf{Z}_2 \times \mathbf{Z}_2$.

 $\mathbf{Z}_{8}^{\times} = \{ [1]_{8}, [3]_{8}, [5]_{8}, [7]_{8} \} \text{ and } \mathbf{Z}_{2} \times \mathbf{Z}_{2} = \{ ([0]_{2}, [0]_{2}), ([1]_{2}, [0]_{2}), ([0]_{2}, [1]_{2}), ([1]_{2}, [1]_{2}) \}$ Define a function $\phi : \mathbf{Z}_{8}^{\times} \to \mathbf{Z}_{2} \times \mathbf{Z}_{2}$ by letting

 $\phi([1]_8) = ([0]_2, [0]_2), \phi([3]_8) = ([1]_2, [0]_2), \phi([5]_8) = ([0]_2, [1]_2), \phi([7]_8) = ([1]_2, [1]_2).$

- It is easy to see that ϕ is one-to-one and onto from the definition of ϕ .
- It follows that from the straightforward calculation that ϕ respects the two operations. For any $[a]_8, [b]_8 \in \mathbb{Z}_8^{\times}$, we have $\phi([a]_8[b]_8) = \phi([a]_8)\phi([b]_8)$.

Thus, ϕ is an isomorphism.

You can also write the function ϕ in a compact version. In particular, $\phi([3]_8^m[5]_8^n) = ([m]_2, [n]_2)$ for m = 0, 1 and n = 0, 1.

(3) Show that \mathbf{Z}_5^{\times} is not isomorphic to \mathbf{Z}_8^{\times} by showing that the first group has an element of order 4 but the second group does not.

In \mathbf{Z}_5^{\times} , the element [3]₅ has order 4. And $\mathbf{Z}_5^{\times} = \langle [3]_5 \rangle$ implies that \mathbf{Z}_5^{\times} is cyclic.

In \mathbf{Z}_8^{\times} , every non-identity element has order 2. In particular, \mathbf{Z}_8^{\times} is not cyclic. Thus there cannot be an isomorphism between them.

(4) Let (G, \cdot) be a group. Define a new binary operation * on G by the formula $a * b = b \cdot a$, for all $a, b \in G$.

Show that the group (G, *) is isomorphic to the group (G, \cdot) .

Let $G_1 = (G, \cdot)$ and let $G_2 = (G, *)$. Define a function $\phi : G_1 \to G_2$ by $\phi(a) = a^{-1}$ for all $a \in G_1$.

- well-defined: $\phi(a) = a^{-1} \in G_2$ since G is a group.
- respects the two operations: For any two elements $a, b \in G_1$, we have $\phi(a \cdot b) = (a \cdot b)^{-1} = b^{-1} \cdot a^{-1} = a^{-1} * b^{-1} = \phi(a) * \phi(b).$
- one-to-one: If $\phi(x) = e$ for $x \in G_1$, then $x^{-1} = e$ and so x = e.
- onto: For any $a \in G_2$, we have $\phi(a^{-1}) = (a^{-1})^{-1} = a$.

Thus, ϕ is an isomorphism.

(5) Find two abelian groups of order 8 that are not isomorphic.

 $\mathbf{Z}_8 \not\cong \mathbf{Z}_2 \times \mathbf{Z}_4$. The first one is cyclic, but the second one is not cyclic;

 $\mathbf{Z}_8 \cong \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$. Same reason as above;

 $\mathbf{Z}_2 \times \mathbf{Z}_4 \not\cong \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$. The first group has an element of order 4, eg. ([1], [1]). However, in the second group, every non-identity element has order 2.

(6) Let G be any group, and let a be a fixed element of G. Define a function

 $\phi_a: G \to G$ by $\phi_a(x) = axa^{-1}$, for all $x \in G$.

Show that ϕ_a is an isomorphism.

- well-defined: Trivial.
- respects the two operations: For any $x, y \in G$, we have $\phi_a(xy) = axya^{-1} = ax(a^{-1}a)ya^{-1} = (axa^{-1})(aya^{-1}) = \phi_a(x)\phi_a(y).$
- one-to-one: If $\phi_a(x) = e$, then $axa^{-1} = e$, and so $x = a^{-1}ea = e$.
- onto: For any $y \in G$, we have $\phi_a(a^{-1}ya) = a(a^{-1}ya)a^{-1} = y$.

Thus, ϕ is an isomorphism.

- (7) Let G be any group. Define $\phi: G \to G$ by $\phi(x) = x^{-1}$, for all $x \in G$.
 - (a) Prove that ϕ is one-to-one and onto.

To show ϕ is one-to-one and onto, we are trying to find its inverse function. Define $\phi^{-1}: G \to G$ by letting $\phi^{-1}(x) = x^{-1}$ for all $x \in G$. Then we have $\phi(\phi^{-1}(x)) = \phi(x^{-1}) = (x^{-1})^{-1} = x; \phi^{-1}(\phi(x)) = \phi^{-1}(x^{-1}) = (x^{-1})^{-1} = x$ for all $x \in G$. This shows that ϕ^{-1} is the inverse function of ϕ . \Box

(b) Prove that ϕ is an isomorphism if and only if G is abelian.

By part (a), to show ϕ is an isomorphism, it suffices to show that ϕ preserves products. For any two elements $x, y \in G$, we have

$$b(xy) = (xy)^{-1} = y^{-1}x^{-1}.$$

- If G is abelian, $\phi(xy) = (xy)^{-1} = y^{-1}x^{-1} = x^{-1}y^{-1} = \phi(x)\phi(y)$. \checkmark
- If ϕ preserves products, then we have $\phi(xy) = \phi(x)\phi(y)$. That is, $y^{-1}x^{-1} = x^{-1}y^{-1} \Rightarrow (xy)y^{-1}x^{-1}(yx) = (xy)x^{-1}y^{-1}(yx) \Rightarrow yx = xy$ This shows that G is abelian since x, y are arbitrary elements in G.

In conclusion, ϕ is an isomorphism if and only if G is abelian.

(8) Define * on **R** by a * b = a + b - 1, for all $a, b \in \mathbf{R}$. Show that the group $(\mathbf{R}, *)$ is isomorphic to the group $(\mathbf{R}, +)$.

Question (8) is only for the students who are in Math 701I. Let $G_1 = (\mathbf{R}, *)$ and let $G_2 = (\mathbf{R}, +)$. Define a function $\phi : G_1 \to G_2$ by $\phi(a) = a - 1$ for all $a \in G_1$.

- well-defined: Trivial.
- ϕ respects the two operations: For any two elements $a, b \in G_1$, we have $\phi(a * b) = \phi(a + b 1) = a + b 1 1 = (a 1) + (b 1) = \phi(a) + \phi(b)$.
- one-to-one: If $\phi(a) = e_2 = 0$, then a 1 = 0, and so $a = 1 = e_1$.
- onto: For any $x \in G_2$, we have $\phi(x+1) = x+1-1 = x$.

Thus, ϕ is an isomorphism.