Homework 3

Due: May 22nd (Saturday), 11:59 pm

- Please submit your work on Blackboard.
- You are required to submit your work as a single pdf.
- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- There are five randomly picked questions (2 pts for each) that will be graded. (2), (3), (4), (6), (7)
- (1) In $GL_2(\mathbf{R})$, find the order of each of the following elements.

(a)
$$\begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}^3 = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = -I_2$$

$$\Rightarrow \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}^6 = (-I_2)^2 = I_2. \text{ Thus, the matrix } \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} \text{ has order } 6.$$

It easily follows from the direct computations to see that its order cannot be 4 or 5.

(b)
$$\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & -n \\ 0 & 1 \end{bmatrix}$$
 for all n . Thus $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ has infinite order.

- (2) For each of the following groups, find all cyclic subgroups of the group.
 - (a) ${\bf Z}_8$

$$\begin{split} \mathbf{Z}_8 &= \langle [1] \rangle = \langle [3] \rangle = \langle [5] \rangle = \langle [7] \rangle \text{ since } \mathbf{Z}_8^\times = \{ [1], [3], [5], [7] \}. \\ \langle [2] \rangle &= \langle [6] \rangle = \{ [0], [2], [4], [6] \} \\ \langle [4] \rangle &= \{ [0], [4] \} \\ \langle [0] \rangle &= \{ [0] \} \end{split}$$

$$\langle [2] \rangle = \langle [6] \rangle = \{[0], [2], [4], [6]\}$$

$$\langle [4] \rangle = \{ [0], [4] \}$$

$$\langle [0] \rangle = \{ [0] \}$$

(b) \mathbf{Z}_{12}^{\times}

$$\mathbf{Z}_{12}^{\times} = \{[1], [5], [7], [11]\} = \{[1], [5], [-5], [-1]\}$$

$$\langle [1] \rangle = \{[1]\}$$

$$\langle [1] \rangle = \{ [1] \}$$

$$\langle [5] \rangle = \{[1], [5]\}$$

$$\langle [7] \rangle = \{[1], [7]\}$$

$$\langle [11] \rangle = \{ [1], [11] \}$$

This implies that \mathbf{Z}_{12}^{\times} is not a cyclic group.

(3) Find the cyclic subgroup of S_6 generated by the element (123)(456).

$$[(123)(456)]^2 = (123)^2(456)^2 = (132)(465)$$
 since (123) and (456) are disjoint.

$$[(123)(456)]^3 = (123)^3(456)^3 = (1)$$
 since (123) and (456) are cycles of length 3

(4) Let
$$G = GL_3(\mathbf{R})$$
. Show that

$$H = \left\{ \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{bmatrix} \right\}$$

is a subgroup of G.

(i) Closure:
$$\begin{bmatrix} 1 & 0 & 0 \\ a_1 & 1 & 0 \\ b_1 & c_1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ a_2 & 1 & 0 \\ b_2 & c_2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ a_1 + a_2 & 1 & 0 \\ b_1 + c_1 a_2 + b_2 & c_1 + c_2 & 1 \end{bmatrix} \in H.$$

(ii) The identity matrix $I_3 \in H$ by letting a = b = c = 0.

(iii) Inverses: By part (i):
$$\begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -a & 1 & 0 \\ -b+ca & -c & 1 \end{bmatrix} \in H.$$

(5) Prove that the intersection of any collection of subgroups of a group is again a subgroup.

Let G be a group and H_i be a subgroup of G for $i \in I$. (I is an index set) Then we need to show that $K = \bigcap_{i \in I} H_i$ is again a subgroup of G.

- (a) Take any $a, b \in K \subseteq H_i$, for each i. Then $ab \in H_i$ since H_i is a subgroup. Thus, $ab \in K$ since i is arbitrary.
- (b) The identity element $e \in H_i$ for each i, so $e \in K$.
- (c) Take any $a \in K \subseteq H_i$, for each i. Then $a^{-1} \in H_i$ since H_i is a subgroup. Thus, $a^{-1} \in K$ since i is arbitrary.

(6) Prove that any cyclic group is abelian.

Let $\langle g \rangle$ be a cyclic group G. For any two elements $a, b \in G$, there exist $m, n \in \mathbf{Z}$ such that $a = g^m$ and $b = g^n$. Thus,

$$ab = g^m g^n = g^{m+n} = g^{n+m} = g^n g^m = ba.$$

(7) Let G be a group. The set

$$Z(G) = \{ x \in G \mid xg = gx \text{ for all } g \in G \}$$

of all elements that commute with every other element of G is called the **center** of G. Show that Z(G) is a subgroup of G.

- (a) If $x, y \in Z(G)$, then $xy \in Z(G)$ since by definition we have (xy)g = x(yg) = x(gy) = (xg)y = (gx)y = g(xy) for all $g \in G$.
- (b) The identity element $e \in Z(G)$ since eg = g = ge for all $g \in G$.
- (c) If $x \in Z(G)$, then $x^{-1} \in Z(G)$. In fact, for all $g \in G$ we have $g = eg = (x^{-1}x)g = x^{-1}(xg) = x^{-1}(gx) = (x^{-1}g)x$. Thus, $gx^{-1} = x^{-1}g$ for all $g \in G$.

(8) Show that if a group G has a unique element a of order 2, then $a \in Z(G)$.

Question (8) is only for the students who are in Math 701I.

To show $a \in Z(G)$, it is equivalent to show that ab = ba for all $b \in G$. Consider the element bab^{-1} for each $b \in G$, since $a^2 = e$ we have

$$(bab^{-1})^2 = (bab^{-1})(bab^{-1}) = bab^{-1}bab^{-1} = ba^2b^{-1} = beb^{-1} = e.$$

We omit the parentheses in the above calculations. There are two possibilities:

- (a) If $bab^{-1} = e$, then ba = b. This implies a = e. We obtain a contradiction since o(a) = 2.
- (b) If $bab^{-1} \neq e$, then $o(bab^{-1}) = 2$. So $bab^{-1} = a$ since the element a is the unique one in G with order 2. This implies ba = ab for all $b \in G$. Thus, $a \in Z(G)$.