Homework 1

Due: May 15th (Saturday), 11:59 pm

- Please submit your work on Blackboard.
- You are required to submit your work as a single pdf, not as an email attachment (if needed, there are many online converters of jpg pictures to pdfs).
- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- There are five randomly picked questions (2 pts for each) that will be graded.
- (0) Read §1.1 and §1.2 to make sure you understand the gcd, lcm, and Euclidean algorithm.
- (1) Solve the following congruences.
 - (a) $2x \equiv 1 \pmod{9}$
 - (b) $20x \equiv 12 \pmod{72}$
- (2) Solve the following system of congruences.

 $x \equiv 15 \pmod{27}$ $x \equiv 16 \pmod{20}$

(3) Make addition and multiplication tables for \mathbf{Z}_4 .

- (4) Find the multiplicative inverses of the given elements (if possible).
 (a) [6] in Z₁₅.
 - (b) [7] in \mathbf{Z}_{15} .

- (5) Let (a, n) = 1. The smallest positive integer k such that $a^k \equiv 1 \pmod{n}$ is called the **multiplicative order** of [a] in \mathbf{Z}_n^{\times} . Find the multiplicative orders of [5] and [7] in \mathbf{Z}_{16}^{\times} and show that their multiplicative orders both divide $\varphi(16)$.
- (6) Consider the following permutations in S_7 .

 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 5 & 4 & 6 & 1 & 7 \end{pmatrix} \quad \text{and} \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 5 & 7 & 4 & 6 & 3 \end{pmatrix}$

(a) Write the following permutations as a product of disjoint cycles.

(i)
$$\sigma \tau$$
 (ii) $\tau \sigma$ (iii) σ^{-1} (iv) $\sigma \tau \sigma^{-1}$

(b) Write σ and τ as products of transpositions.

(7) Write

$(1 \ 2$	3	4	5	6	7	8	9	10
$(3 \ 4)$	10	5	7	8	2	6	9	1)

as a product of disjoint cycles and as a product of transpositions. Find its inverse, and find its order.