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Brief review from § 1.3, 1.4, 2.3 & § 3.1-3.8 (next slide)

Division Algorithm: a = bq + r ,with 0 ≤ r < b.  Euclidean Algorithm

A useful skill: To show b|a, write a = bq + r first and then to show r = 0.

d = gcd(a, b) is the smallest positive linear combination of a and b.
An integer x is a linear combination of a and b if and only if gcd(a, b)|x .

(a, b) = 1 if and only if there exist integers m, n such that ma + nb = 1.

i) If b|ac and (a, b) = 1, then b|c .

ii) If b|a, c|a and (b, c) = 1, then bc|a.

iii) (a, b) · [a, b] = ab.

Two groups: (Zn,+[ ]) with |Zn| = n & (Z×
n , ·[ ]) with |Z×

n | = ϕ(n)

The symmetric group (Sn, ◦) of degree n with |Sn| = n!.

Disjoint cycles are commutative.

σ ∈ Sn can be written as a unique product of disjoint cycles.

The order of σ is the lcm of the orders of its disjoint cycles.
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• Group G : closure, associativity, identity, inverses; (non)abelian, (in)finite

• Subgroup H ⊆ G : closure, identity, inverses

Alternative way: H is nonempty and ab−1 ∈ H for all a, b ∈ H.
|H| <∞: To show H is nonempty and ab ∈ H for all a, b ∈ H.
Cyclic subgroup 〈a〉 generated by a ∈ G & |〈a〉| = o(a) if 〈a〉 is finite.
Product of two subgroups v.s. Direct product of (two  n) groups
N is a normal subgroup of G if gng−1 ∈ N for all n ∈ N, g ∈ G .

N is normal if and only if its left and right cosets coincide.
G/N : Factor group under the coset multiplication aNbN = abN.
Any normal subgp N is the kernel of natural projection π : G → G/N.
G 6= ∅ is called simple if it has no proper nontrivial normal subgroups.

• Lagrange’s Thm If |G | = n <∞ and H ⊆ G , then |H||n.  o(a)|n
• (well-defined) Group homomorphism φ : G1 → G2 if φ(ab) = φ(a)φ(b).

φ(am) = (φ(a))m for all a ∈ G1,m ∈ Z.
If o(a) = n, then o

(
φ(a)

)
|n. ( o

(
φ(a)

)
= n if φ is an isomorphism)

φ is onto: if G1 is abelian (cyclic), then G2 is also abelian (cyclic).
If G1 = 〈a〉, then φ is completely determined by φ(a) and so im(φ) = 〈φ(a)〉.

• Fundamental Homomorphism Theorem G1/ ker(φ) ∼= φ(G1) = im(φ)
• Cayley’s Theorem Every group is isomorphic to a permutation group.
• Cyclic group: (∼= Z or ∼= Zn), Dihedral group Dn, Alternating group An
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Example 1: Which of the groups below are isomorphic to each other?

Groups of order 8 : Z8, Z4 × Z2, Z2 × Z2 × Z2, Z×
24, Z×

30, D4.

In the proof of Euler’s totient function ϕ(n) (see § 3.5, slide #13)

Z×
n
∼= Z×

p
α1
1

× Z×
p
α2
2

× · · · × Z×
pαm
m

Structure Property

Z8 cyclic

Z4 × Z2 abelian, not cyclic; possible orders of an element: 1, 2, 4

Z2 × Z2 × Z2 abelian, not cyclic; each non-identity element has order 2

Z×
24 abelian, not cyclic; Z×

24
∼= Z×

3 × Z×
8
∼= Z2 × Z2 × Z2

Z×
30 abelian, not cyclic; Z×

30
∼= Z×

5 × Z×
3 × Z×

2
∼= Z4 × Z2

D4 not abelian
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Example 2: HW 6 #(9) (bonus question)

Let G be any group with no proper, nontrivial subgroups, and assume that
G has more than one element. Prove that G ∼= Zp for some prime p.

Proof: There exists a non-identity element a ∈ G . Then

G = 〈a〉 [Why?]  G is cyclic.

Moreover, G must be a finite cyclic group. If not, then 〈ak〉 is a proper,
nontrivial subgroup of G = 〈a〉 for any positive integer k , a contradiction.

Let |G | = n > 1. Thus G ∼= Zn. [Why?] Then Zd ⊂ Zn for d |n. [Why?]

By assumption, d = 1 or d = n.  n has to be a prime number p.

Let G be a group with |G | = pq, where p 6= q are prime numbers. Then
every proper nontrivial subgroup of G is cyclic.

Proof: Let H be a proper nontrivial subgroup of G . By Lagrange’s Thm,
|H| has to be p or q. Hence H is cyclic. [Why?]
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Example 3

Let G be an abelian group. Let H := {a ∈ G | o(a) <∞}. Show that

i) H is a subgroup of G .

ii) K = {a ∈ G | o(a)|k} is a subgroup of H for a fixed positive integer k.

iii) Is K̃ = {a ∈ G | o(a) ≤ k} also a subgroup of H for a fixed k ∈ Z>0 ?

Proof: i) Nonempty: e ∈ H. For any a, b ∈ H, we have o(a), o(b) <∞.

(ab−1)o(a)·o(b)
!

= (a)o(a)·o(b)(b−1)o(a)·o(b) = · · · = e.  ab−1 ∈ H

ii) Nonempty: e ∈ K . For any a, b ∈ K , we have o(a)|k , o(b)|k .

(ab−1)[o(a),o(b)]
!

= (a)[o(a),o(b)](b−1)[o(a),o(b)] = ee = e.  ab−1 ∈ K

iii) Might not be. Counterexample: Let H = G = Z6.

[0]6 [1]6 [2]6 [3]6 [4]6 [5]6
order 1 6 3 2 3 6

However, the set {[0]6, [2]6, [3]6, [4]6} is not a subgroup of H, which is the
collection of all the elements whose order is less than 4.
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Example 4

Let p > 2 be a prime. Any group G of order 2p has an element of order 2
and an element of order p.

Proof: By Lagrange’s theorem, an element can have order 1, 2, p or 2p.

i) If G has an element of order 2p, then G ∼= Z2p
∼= Z2 × Zp. 3

ii) If G is not cyclic, then the only possible orders of elements are 1, 2, p.

Since |G | is even, it must contain one element of order 2. (see § 3.6, #13)

Proof: If not, {a, a−1} ∈ G with a 6= a−1 for any a 6= e & {e, e−1} = {e}.
 G has an odd number of elements, which is impossible. �

G must contain an element of order p. (similarly as in § 3.6, #13)

Proof: If not, assume that every non-identity element of G has order 2.

Then we can always find a subgroup of order 4 as in § 3.6, #13, which is
isomorphic to Z2 × Z2, a contradiction. [Why?] �
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Example 5: The second isomorphism theorem

Let H and N be subgroups of a group G , and assume that N is normal.

i) N is a normal subgroup of HN.

ii) φ : H → HN/N defined by φ(h) = hN is an onto homomorphism.

iii) HN/N ∼= H/K , where K = H ∩ N.

Proof: i) HN is a subgroup: Nonempty since e ∈ HN. For any h1n1, h2n2

∈ HN, h1n1(h2n2)−1 = h1n1n
−1
2 h−1

2 = h1h
−1
2 (h2n1n

−1
2 h−1

2 ) ∈ HN. [Why?]

N is normal in HN: For any a ∈ N, hn ∈ HN, we have hna(hn)−1 ∈ N. [Why?]

ii) well-defined: hN = hnN ∈ HN/N for any n ∈ N. φ is a homomorphism:

For any h1, h2 ∈ H, we have φ(h1h2) = h1h2N
!

= h1Nh2N = φ(h1)φ(h2).

φ is onto by the definition of φ.

iii) ker(φ) = {h ∈ H | φ(h) = hN = N} = {h ∈ H | h ∈ N} = H ∩ N.

By the fundamental homomorphism thm (The first isomorphism theorem),

HN/N ∼= H/H ∩ N.
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Example 6: The third isomorphism theorem

Let H and N be normal subgroups of a group G with N ⊆ H. Define

φ : G/N → G/H by φ(xN) = xH, for all cosets xN ∈ G/N.

i) φ is a well-defined onto homomorphism.

ii) (G/N)/(H/N) ∼= G/H.

Proof: i) well-defined: If xN = yN, then y−1x ∈ N, and so y−1x ∈ H.

This implies that xH = yH, i,e., φ(xN) = φ(yN).

φ is a homomorphism: For any xN, yN ∈ G/N, we have

φ(xNyN)
!

= φ(xyN) = xyH
!

= xHyH = φ(xN)φ(yN).

φ is onto since any coset xH occurs as the image of xN under φ.

ii) ker(φ) = {xN ∈ G/N | φ(xN) = xH = H} = {xN ∈ G/N | x ∈ H}.
This implies that ker(φ) is the left cosets of N in H, i.e., ker(φ) = H/N.

In fact, N is normal in H. [Why?] By the fundamental homomorphism thm,

(G/N)/(H/N) ∼= G/H.
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