Final Review

Shaoyun Yi

MATH 546/701I

University of South Carolina

Summer 2021

Brief review from \S 1.3, 1.4, 2.3 & \S 3.1-3.8 (next slide)

Division Algorithm: a = bq + r, with $0 \le r < b$. \rightsquigarrow Euclidean Algorithm

A useful skill: To show b|a, write a = bq + r first and then to show r = 0.

d = gcd(a, b) is the smallest positive linear combination of a and b. An integer x is a linear combination of a and b if and only if gcd(a, b)|x.

(a, b) = 1 if and only if there exist integers m, n such that ma + nb = 1.

i) If b|ac and (a, b) = 1, then b|c.
ii) If b|a, c|a and (b, c) = 1, then bc|a.
iii) (a, b) ⋅ [a, b] = ab.

- Two groups: $(\mathbf{Z}_n, +_{[]})$ with $|\mathbf{Z}_n| = n \& (\mathbf{Z}_n^{\times}, \cdot_{[]})$ with $|\mathbf{Z}_n^{\times}| = \varphi(n)$
- The symmetric group (S_n, \circ) of degree *n* with $|S_n| = n!$.
 - Disjoint cycles are commutative.
 - $\sigma \in S_n$ can be written as a *unique* product of disjoint cycles.
 - The order of σ is the ${\rm lcm}$ of the orders of its disjoint cycles.

Shaoyun Yi

- Group G: closure, associativity, identity, inverses; (non)abelian, (in)finite
- Subgroup $H \subseteq G$: closure, identity, inverses
 - Alternative way: *H* is nonempty and $ab^{-1} \in H$ for all $a, b \in H$.
 - $|H| < \infty$: To show H is nonempty and $ab \in H$ for all $a, b \in H$.
 - Cyclic subgroup $\langle a \rangle$ generated by $a \in G \& |\langle a \rangle| = o(a)$ if $\langle a \rangle$ is finite.
 - Product of two subgroups v.s. Direct product of $(two \rightarrow n)$ groups
 - N is a normal subgroup of G if $gng^{-1} \in N$ for all $n \in N, g \in G$.
 - N is normal if and only if its left and right cosets coincide.
 - G/N: Factor group under the coset multiplication aNbN = abN.
 - Any normal subgp N is the kernel of natural projection $\pi: G \to G/N$.
 - $G \neq \emptyset$ is called *simple* if it has no proper nontrivial normal subgroups.
- Lagrange's Thm If $|G| = n < \infty$ and $H \subseteq G$, then $|H||n. \rightsquigarrow o(a)|n$
- (well-defined) Group homomorphism $\phi : G_1 \to G_2$ if $\phi(ab) = \phi(a)\phi(b)$.
 - $\phi(a^m) = (\phi(a))^m$ for all $a \in G_1, m \in \mathbb{Z}$.
 - If o(a) = n, then $o(\phi(a))|n$. ($\rightsquigarrow o(\phi(a)) = n$ if ϕ is an isomorphism)
 - ϕ is onto: if G_1 is abelian (cyclic), then G_2 is also abelian (cyclic).
 - If $G_1 = \langle a \rangle$, then ϕ is completely determined by $\phi(a)$ and so $\operatorname{im}(\phi) = \langle \phi(a) \rangle$.
- Fundamental Homomorphism Theorem $G_1/\ker(\phi) \cong \phi(G_1) = \operatorname{im}(\phi)$
- Cayley's Theorem Every group is isomorphic to a permutation group. Cyclic group: ($\cong \mathbb{Z}$ or $\cong \mathbb{Z}_n$), Dihedral group D_n , Alternating group A_n Shaoyun Yi Summer 2021 3/

Example 1: Which of the groups below are isomorphic to each other?

Groups of order 8:
$$Z_8$$
, $Z_4 \times Z_2$, $Z_2 \times Z_2 \times Z_2$, Z_{24}^{\times} , Z_{30}^{\times} , D_4 .In the proof of Euler's totient function $\varphi(n)$ (see § 3.5, slide #13) $Z_n^{\times} \cong Z_{p_1}^{\times} \times Z_{p_2}^{\times} \times \cdots \times Z_{p_m}^{\times}$ $Z_n^{\times} \cong Z_{p_1}^{\times} \times Z_{p_2}^{\times} \times \cdots \times Z_{p_m}^{\times}$ Structure Property Z_8 cyclic $Z_4 \times Z_2$ abelian, not cyclic; possible orders of an element: 1, 2, 4 $Z_2 \times Z_2 \times Z_2$ abelian, not cyclic; each non-identity element has order 2 Z_{24}^{\times} abelian, not cyclic; $Z_{24}^{\times} \cong Z_3^{\times} \times Z_8^{\times} \cong Z_2 \times Z_2 \times Z_2$ Z_{30}^{\times} abelian, not cyclic; $Z_{30}^{\times} \cong Z_5^{\times} \times Z_3^{\times} \times Z_2^{\times} \cong Z_4 \times Z_2$ D_4

Final Review

Summer 2021

Shaoyun Yi

Example 2: HW 6 #(9) (bonus question)

Let G be any group with no proper, nontrivial subgroups, and assume that G has more than one element. Prove that $G \cong \mathbf{Z}_p$ for some prime p.

Proof: There exists a non-identity element $a \in G$. Then

 $G = \langle a \rangle$ [Why?] $\rightsquigarrow G$ is cyclic.

Moreover, G must be a finite cyclic group. If not, then $\langle a^k \rangle$ is a proper, nontrivial subgroup of $G = \langle a \rangle$ for any positive integer k, a contradiction. Let |G| = n > 1. Thus $G \cong \mathbb{Z}_n$. [Why?] Then $\mathbb{Z}_d \subset \mathbb{Z}_n$ for d|n. [Why?] By assumption, d = 1 or d = n. $\rightsquigarrow n$ has to be a prime number p.

Let G be a group with |G| = pq, where $p \neq q$ are prime numbers. Then every proper nontrivial subgroup of G is cyclic.

Proof: Let *H* be a proper nontrivial subgroup of *G*. By Lagrange's Thm, |H| has to be *p* or *q*. Hence *H* is cyclic. [Why?]

Shaoyun Yi

Example 3

Let G be an abelian group. Let $H := \{a \in G \mid o(a) < \infty\}$. Show that i) H is a subgroup of G.

ii) $K = \{a \in G \mid o(a)|k\}$ is a subgroup of H for a fixed positive integer k. iii) Is $\widetilde{K} = \{a \in G \mid o(a) \le k\}$ also a subgroup of H for a fixed $k \in \mathbb{Z}_{>0}$?

Proof: i) Nonempty: *e* ∈ *H*. For any *a*, *b* ∈ *H*, we have *o*(*a*), *o*(*b*) < ∞. $(ab^{-1})^{o(a) \cdot o(b)} \stackrel{!}{=} (a)^{o(a) \cdot o(b)} (b^{-1})^{o(a) \cdot o(b)} = \cdots = e. \quad \rightsquigarrow ab^{-1} \in H$ ii) Nonempty: *e* ∈ *K*. For any *a*, *b* ∈ *K*, we have *o*(*a*)|*k*, *o*(*b*)|*k*. $(ab^{-1})^{[o(a),o(b)]} \stackrel{!}{=} (a)^{[o(a),o(b)]} (b^{-1})^{[o(a),o(b)]} = ee = e. \quad \rightsquigarrow ab^{-1} \in K$

iii) Might not be. Counterexample: Let $H = G = \mathbf{Z}_6$.

However, the set $\{[0]_6, [2]_6, [3]_6, [4]_6\}$ is not a subgroup of H, which is the collection of all the elements whose order is less than 4.

Example 4

Let p > 2 be a prime. Any group G of order 2p has an element of order 2 and an element of order p.

Proof: By Lagrange's theorem, an element can have order 1, 2, p or 2p. i) If *G* has an element of order 2p, then $G \cong \mathbb{Z}_{2p} \cong \mathbb{Z}_2 \times \mathbb{Z}_p$. \checkmark ii) If *G* is not cyclic, then the only possible orders of elements are 1, 2, p.

Since |G| is even, it must contain one element of order 2. (see § 3.6, #13)

Proof: If not, $\{a, a^{-1}\} \in G$ with $a \neq a^{-1}$ for any $a \neq e \& \{e, e^{-1}\} = \{e\}$. $\rightsquigarrow G$ has an odd number of elements, which is impossible.

G must contain an element of order p. (similarly as in § 3.6, #13)

Proof: If not, assume that every non-identity element of *G* has order 2. Then we can always find a subgroup of order 4 as in § 3.6, #13, which is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$, a contradiction. [Why?]

Shaoyun Yi

Final Review

Example 5: The second isomorphism theorem

Let H and N be subgroups of a group G, and assume that N is normal.

i) N is a normal subgroup of HN.

ii) $\phi: H \to HN/N$ defined by $\phi(h) = hN$ is an onto homomorphism.

iii) $HN/N \cong H/K$, where $K = H \cap N$.

Proof: i) *HN* is a subgroup: Nonempty since $e \in HN$. For any $h_1n_1, h_2n_2 \in HN$, $h_1n_1(h_2n_2)^{-1} = h_1n_1n_2^{-1}h_2^{-1} = h_1h_2^{-1}(h_2n_1n_2^{-1}h_2^{-1}) \in HN$. [Why?] *N* is normal in *HN*: For any $a \in N$, $hn \in HN$, we have $hna(hn)^{-1} \in N$. [Why?] ii) well-defined: $hN = hnN \in HN/N$ for any $n \in N$. ϕ is a homomorphism:

For any $h_1, h_2 \in H$, we have $\phi(h_1h_2) = h_1h_2N \stackrel{!}{=} h_1Nh_2N = \phi(h_1)\phi(h_2)$. ϕ is onto by the definition of ϕ .

iii) $\ker(\phi) = \{h \in H \mid \phi(h) = hN = N\} = \{h \in H \mid h \in N\} = H \cap N.$

By the fundamental homomorphism thm (The first isomorphism theorem),

$$HN/N \cong H/H \cap N.$$

Example 6: The third isomorphism theorem

Let H and N be normal subgroups of a group G with $N \subseteq H$. Define

 $\phi: G/N \to G/H$ by $\phi(xN) = xH$, for all cosets $xN \in G/N$.

i) ϕ is a well-defined onto homomorphism.

ii) $(G/N)/(H/N) \cong G/H$.

Proof: i) well-defined: If xN = yN, then $y^{-1}x \in N$, and so $y^{-1}x \in H$. This implies that xH = yH, i.e., $\phi(xN) = \phi(yN)$. ϕ is a homomorphism: For any $xN, yN \in G/N$, we have

$$\phi(xNyN) \stackrel{!}{=} \phi(xyN) = xyH \stackrel{!}{=} xHyH = \phi(xN)\phi(yN).$$

 ϕ is onto since any coset xH occurs as the image of xN under ϕ . ii) ker $(\phi) = \{xN \in G/N \mid \phi(xN) = xH = H\} = \{xN \in G/N \mid x \in H\}$. This implies that ker (ϕ) is the left cosets of N in H, i.e., ker $(\phi) = H/N$. In fact, N is normal in H. [Why?] By the fundamental homomorphism thm, $(G/N)/(H/N) \cong G/H$.