Final Exam

Exam Date: June 19th-20th (12:30 pm, Saturday–12:30 pm, Sunday) Exam Length: 150 minutes

- Please submit your work on Blackboard before Sunday (6/20) 12:30 pm.
- You are required to submit your work as a single pdf.
- Please make sure your handwriting is clear enough to read. Thanks.
- You will be allowed to use your notes and the book during the exam.
- No collaborations are allowed.
- No consulting any online sources is allowed.
- No late work will be accepted.
- Total score: 150 points.

(0) [5 points] Write the following honors code with your full name at the end. I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code. As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam. Full name

- (1) **[30 points**] True or False:
 - i) **R** is a group under multiplication.
 - ii) A cyclic group is always abelian.
 - iii) $[9]_{35}$ is a unit in Z_{35} .
 - iv) If |G| = 31, then G must be isomorphic to \mathbf{Z}_{31} .
 - v) A_n is a normal subgroup of S_n .
 - vi) $D_4 \cong \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$.
 - vii) The order of gH in G/H is the smallest positive integer n such that $g^n = e$.
 - viii) The product of an even number of disjoint cycles is an even permutation.
 - ix) $\mathbf{Z}_{10} \times \mathbf{Z}_{10} \cong \mathbf{Z}_5 \times \mathbf{Z}_{20}$.
 - x) \mathbf{Z}_{17} is a simple group.

(2) [15 points] For the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 8 & 5 & 2 & 10 & 9 & 1 & 4 & 6 & 7 \end{pmatrix}$:

- (a) Write σ as a product of disjoint cycles.
- (b) Write σ as a product of transpositions.
- (c) Write σ^{-1} as a product of disjoint cycles.
- (d) Is σ even, odd, neither or both? Is σ^{-1} even, odd, neither or both?
- (e) What is the order of σ ?
- (3) [20 points] Let G be the set of nonzero rational numbers \mathbf{Q}^{\times} . Define a new multiplication by $a * b = \frac{ab}{5}$, for all $a, b \in G$. Show that (G, *) is an abelian group.

- (4) (a) [5 points] Let $G = \langle a \rangle$ be a group of order 50. What is the order of $\langle a^{35} \rangle$?
 - (b) [5 points] What is the order of $([18]_{20}, [25]_{30})$ in $\mathbb{Z}_{20} \times \mathbb{Z}_{30}$?
 - (c) [5 points] Let $G = \mathbb{Z}_{48}$. List all possible choice of $[k]_{48}$ such that $\langle [k]_{48} \rangle = \langle [20]_{48} \rangle$.
- (5) [5 points] Let G be a non-cyclic group of order 27. Prove that $a^9 = e$ for all $a \in G$.
- (6) Let H be a subgroup of G. Let $N(H) = \{g \in G \mid gHg^{-1} = H\}$. Prove
 - (a) [8 points] N(H) is a subgroup of G.
 - (b) [6 points] H is a subgroup of N(H).
 - (c) [6 points] H is normal in N(H).
- (7) Let G and H be groups. Define the function $\phi: G \times H \to G$ by

$$\phi((a, b)) = a$$
, for all $(a, b) \in G \times H$.

- (a) [5 points] Prove that ϕ is a group homomorphism and onto.
- (b) [5 points] Find ker(ϕ).
- (8) (a) [4 points] Let G be an abelian group. Let H be a subgroup of G. Prove that aH = Ha for any $a \in G$.
 - (b) [8 pts] List the cosets of $\langle [11]_{24} \rangle$ in \mathbf{Z}_{24}^{\times} .
 - (c) [8 pts] Prove that the factor group $\mathbf{Z}_{24}^{\times}/\langle [11]_{24}\rangle \cong \mathbf{Z}_2 \times \mathbf{Z}_2$.
- (9) [10 points] May you have a good summer! Stay safe!