Exam II Review

Shaoyun Yi

MATH 546/701I

University of South Carolina

Summer 2021

Review

- A group isomorphism $\phi : (G_1, *) \to (G_2, \cdot)$
 - Find/Verify $\phi\colon$ well-defined; 1-to-1 & onto; respects two operations
 - $\phi(a^n) = (\phi(a))^n$ for all $a \in G_1$ and all $n \in \mathbf{Z}$. e.g., n = 0 & n = -1
 - $o(a) = n \rightsquigarrow o(\phi(a)) = n$ & abelian (cyclic) \rightsquigarrow abelian (cyclic)

• Lagrange's Theorem If $|G| = n < \infty$ and $H \subseteq G$, then |H||n.

- The converse is false: e.g., No subgroup of order 6 in A_4
- $|\langle a \rangle| = o(a) | n$ for any $a \in G$. $\rightsquigarrow a^n = e \longrightarrow$ Euler's theorem
- Any group of prime order is cyclic (\rightsquigarrow abelian).
- Cayley's Theorem Every group is isomorphic to a permutation group.
 - Cyclic group: Infinite: \cong Z & Finite: \cong Z_n $\rightarrow \rightarrow$ multiplicative G
 - subgroups of Z & subgroups of $Z_n \longrightarrow subgroup diagram$
 - G finite abelian with exponent $N = \max\{o(a)\} \rightsquigarrow G$ cyclic $\Leftrightarrow N = |G|$
 - Z_n^{\times} is not always cyclic. e.g., Z_{15}^{\times} not cyclic; $Z_7^{\times} \cong Z_{14}^{\times} \cong Z_6$ cyclic.
 - Dihedral group $D_n, |D_n| = 2n$: e.g., subgroup diagram of $S_3 = D_3, D_4$
 - Alternating group A_n , $|A_n| = n!/2$: e.g., list all the elements of A_3 , A_4
- Product of two subgroups is not always a subgroup.

If $h^{-1}kh \in K$ for all $h \in H, k \in K$, then HK is a subgroup. $\rightsquigarrow G$ abelian \bigcirc

• Direct product of (two $\rightsquigarrow n$) groups: e.g., $\mathbf{Z}_n \cong \mathbf{Z}_{p_1^{\alpha_1}} \times \cdots \mathbf{Z}_{p_m^{\alpha_m}} \rightsquigarrow \varphi(n)$ The order of an element is the **Icm** of the orders of each component.

Shaoyun Yi

Let G be an abelian group with subgroups H and K.

If HK = G and $H \cap K = \{e\}$, then $G \cong H \times K$.

Proof: Define $\phi : H \times K \to G$ by $\phi((h, k)) = hk$ for all $(h, k) \in H \times K$. i) well-defined: \checkmark [Why?]

ii) ϕ preserves the products: For all $(h_1, k_1), (h_2, k_2) \in H \times K$ we have

$$\phi((h_1, k_1)(h_2, k_2)) = \phi((h_1h_2, k_1k_2))$$

= $h_1h_2k_1k_2$
= $h_1k_1h_2k_2$
= $\phi((h_1, k_1))\phi((h_2, k_2))$

iii) one-to-one: If φ((h, k)) = e for (h, k) ∈ H × K, then we have hk = e. hk = e → h = k⁻¹ ∈ H ∩ K [Why?] → h = k = e. [Why?] Thus φ is one-to-one.
iv) onto: For any g ∈ G, we have g = hk with h ∈ H, k ∈ K.√ [Why?] □ Let G be a finite abelian group, and let $n \in \mathbf{Z}^+$. Define a function

$$\phi: G \to G$$
 by $\phi(g) = g^n$, for all $g \in G$.

Then ϕ is an isomorphism if and only if G has no non-identity element whose order is a divisor of n.

Proof: The well-definedness of φ is clear. [Why?]
i) φ preserves the products: For any g, h ∈ G, we have φ(gh) = (gh)ⁿ = gⁿhⁿ = φ(g)φ(h).
ii) one-to-one and onto: If φ is one-to-one, then φ is also onto. [Why?] To show that φ is one-to-one. → To show φ(g) = e → g = e.

 $\phi(g) = g^n = e \rightsquigarrow g = e \iff o(g) \nmid n \text{ for all } g \neq e.$

Thus G has no non-identity element whose order is a divisor of n.

Any cyclic group of even order 2n has exactly one element of order 2. (*)

Proof 1: \rightarrow To show that \mathbf{Z}_{2n} has exactly one element of order 2. [Why?] In \mathbb{Z}_{2n} , if $o([x]_{2n}) = 2$ then $2[x]_{2n} = [0]_{2n}$, i.e., $2x \equiv 0 \pmod{2n}$. Thus $x \equiv 0 \pmod{n}$ $\rightsquigarrow x \equiv 0, n \pmod{2n}$, i.e., $x = [0]_{2n}, [n]_{2n}$. However, $x \neq [0]_{2n}$. [Why?] Thus $x = [n]_{2n}$. **Proof 2:** In \mathbb{Z}_{2n} , there is exactly one subgroup H of order 2 since $H = \langle [k]_{2n} \rangle = \langle [d]_{2n} \rangle$ with $d = \gcd(k, 2n) \stackrel{!}{=} n$. [Why?] $\rightsquigarrow k = n$ [Why?] In particular, $H \cong \mathbb{Z}_2$ [Why?] and \mathbb{Z}_2 has exactly one generator. By (*), showing that \mathbf{Z}_n^{\times} is not cyclic for some *n* is much easier. Observe that $[-1]_n$ always has order 2 in \mathbf{Z}_n^{\times} ($|\mathbf{Z}_n^{\times}|$ is even) for all $n \geq 3$. \mathbf{Z}_8^{\times} is not cyclic since [3]₈ is another element of order 2. \mathbf{Z}_{15}^{\times} is not cyclic since $[4]_{15}$ is another element of order 2. \mathbf{Z}_{21}^{\times} is not cyclic since $[8]_{21}$ is another element of order 2.

Shaoyun Yi

Let
$$H := \left\{ \begin{bmatrix} 1 & 0 \\ c & d \end{bmatrix} \middle| c \in \mathbf{Z}_p, d = \pm 1 \right\} \subseteq \operatorname{GL}_2(\mathbf{Z}_p)$$
. Then $H \cong D_p, p > 2$.

Proof: First, *H* is a subgroup of $GL_2(\mathbb{Z}_p)$. [Why?] And $|H| = 2p = |D_p|$. Recall that $D_p = \{a^k, a^k b \mid 0 \le k < p\}$, where $a^p = e, b^2 = e, ba = a^{-1}b$. Let

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \in H$$
 and $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \in H$

Then $A^p = I_2, B^2 = I_2$ and $A^i \neq A^j B$ for $0 \le i, j < p$. [Why?] Moreover,

$$BA = egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix} egin{bmatrix} 1 & 0 \ 1 & 1 \end{bmatrix} = egin{bmatrix} 1 & 0 \ -1 & -1 \end{bmatrix} = egin{bmatrix} 1 & 0 \ -1 & 1 \end{bmatrix} egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix} = A^{-1}B.$$

Thus we can define $\phi: H \to D_p$ by $\phi(A) = a$ and $\phi(B) = b$.

From the above calculations, it is clear that ϕ is a group isomorphism.

Shaoyun Yi

Recall that $D_n = \{a^k, a^k b \mid 0 \le k < n\}$, where $a^n = e, b^2 = e, ba = a^{-1}b$. $D_{12} \not\cong D_4 \times \mathbf{Z}_3$

Proof: In D_{12} , we have $o(a^k) = \frac{12}{\text{gcd}(k, 12)}$. [W	/hy?] Thus,
--	-------------

Q: What about $a^k b$ for $0 \le k < n$? A: They all have the order 2. [Why?]

a ^k b												
order	2	2	2	2	2	2	2	2	2	2	2	2

 \rightsquigarrow There are only two elements of order 6 in D_{12} . (6 is NOT the only choice. e.g., 2) However, there are ten elements of order 6 in $D_4 \times Z_3$.

- In D_4 , the possible orders of elements are 1, 2, 4. (with #'s 1, 5, 2)
- In Z_3 , the possible orders of elements are 1, 3. (with #'s 1, 2)

 $6 = \operatorname{lcm}[2,3]: \text{ Choose } (x, y) \text{ such that } o(x) = 2 \text{ in } D_4 \text{ and } o(y) = 3 \text{ in } \mathbb{Z}_3.$ $x \in \{a^2, b, ab, a^2b, a^3b\} \subset D_4 \quad \& \quad y \in \{[1]_3, [2]_3\} \subset \mathbb{Z}_3 \quad \Box$