Exam II

Exam Date: June 8th (Tuesday) Exam Length: 100 minutes

- Please submit your work on Blackboard between 09:00 am and 11:59 pm.
- You are required to submit your work as a single pdf.
- Please make sure your handwriting is clear enough to read. Thanks.
- You will be allowed to use your notes and the book during the exam.
- No collaborations are allowed.
- No consulting any online sources is allowed.
- No late work will be accepted.
- Total score: 100 points.

(0) [5 points] Write the following honors code.

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code. As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam. Your name

- (1) [15 points] True or False:
 - (a) $3\mathbf{Z} \cong 9\mathbf{Z}$.
 - (b) Let p be a prime number. Then $\mathbf{Z}_p \times \mathbf{Z}_p \cong \mathbf{Z}_{p^2}$.
 - (c) Every subgroup of a non-cyclic group is non-cyclic.
 - (d) Two finite non-cyclic groups are isomorphic if they have the same order.
 - (e) Let σ be any permutation in S_n . Then σ^2 must be in A_n .
- (2) [20 points] Let $G = \{x \in \mathbf{R} \mid x > 0 \text{ and } x \neq 1\}$, and define * on G by $a * b = a^{\ln b}$ for all $a, b \in G$. In Homework 2 (4), we have already shown that (G, *) is an abelian group and the identity element is the natural number e. Prove that the group (G, *) is isomorphic to the group \mathbf{R}^{\times} under the standard multiplication.
- (3) (a) [8 points] Let G be a group and let $g \in G$ be an element of order 100. List all possible powers of g that have order 5.
 - (b) [8 **points**] Let $G = \mathbf{Z}_{100}$. List all possible choice of $[k]_{100}$ such that $\langle [k]_{100} \rangle = \langle [15]_{100} \rangle$.
 - (c) [8 points] Give the subgroup diagram of \mathbf{Z}_{100} .
- (4) [24 points] Let $D_n = \{a^k, a^k b \mid 0 \le k < n\}$, where $a^n = e, b^2 = e$, and $ba = a^{-1}b$. Moreover, in Homework 7 (3), we have shown that $ba^m = a^{-m}b$ for all $m \in \mathbf{Z}$.
 - (a) [6 points] Show that $(a^k b)^2 = e$ for each $0 \le k < n$.
 - (b) [12 points] Find the order of each element of D_{10} .
 - (c) [6 points] Is D_{10} isomorphic to $\mathbf{Z}_4 \times \mathbf{Z}_5$? Show work to support your answer.
- (5) [12 points] Let G be a finite group of order 125 with the identity element e. Assume that G contains an element a with $a^{25} \neq e$. Prove that G is cyclic.