Exam I Review

Except part V, all the other parts come from the review in each lecture slide.

- Exam $\mathbf I$ Review

Exam $\mathbf I$ Review

Exam I Review

(a) (a, b) $\mathbf k = \langle a, b \rangle \in \mathbb N_0$ and for the residue in section side. (ii)
 $\langle b, b \rangle \in \mathbb N_0$ and $\langle b \rangle \in \mathbb N_0$ and $\langle b \rangle \in \mathbb N_0$ and $\langle b \rangle \in \mathbb N_0$.

(ii) $\langle b$ I. (i) $(a, b) \& [a, b] \rightarrow (a, b) \cdot [a, b] = ab$ (ii) $(a, b)|(am + bn)$, linear combination of a and b (iii) Division Algorithm \rightarrow The Euclidean Algorithm (matrix form) (iv) $(a, b) = 1 \Leftrightarrow am + bn = 1$ for some $m, n \in \mathbb{Z}$ (v) If $b|ac$ and $(a, b) = 1 \Rightarrow b|c$ (vi) $a \equiv b \pmod{n} \Leftrightarrow n|(a - b) \Leftrightarrow a = b + qn \Leftrightarrow [a]_n = [b]_n$ (vii) If $ac \equiv ad \pmod{n}$ and $(a, n) = 1$ (i.e., $a \in \mathbb{Z}_n^{\times}$) $\Rightarrow c \equiv d \pmod{n}$ (viii) Divisor of zero **v.s.** Unit (Cancellation law \checkmark) in \mathbf{Z}_n (ix) Linear congruence $ax \equiv b \pmod{n}$ has a solution $\Leftrightarrow (a, n)|b$ (x) System of congruences: Chinese Remainder Theorem (xi) For $[a] \in \mathbb{Z}_n^{\times}$, find $[a]^{-1}$: (1) the Euclidean algorithm (2) successive powers (3) trial and error (xii) Euler's totient function $\varphi(n) = \#\{a : (a, n) = 1, 1 \le a \le n\} = \#\mathbf{Z}_n^{\times}$ (xiii) Euler's theorem \rightarrow Fermat's "little" theorem
- II. (i) Permutation $\sigma \in \text{Sym}(S)$ (or S_n)
	- (ii) $\#|S_n| = n!$
	- (iii) Composition (Product) $\sigma \tau$ & Inverse σ^{-1}
	- (iv) Cycle of length k: $\sigma = (a_1 a_2 \cdots a_k)$ has order k.
	- (v) Disjoint cycles are commutative
	- (vi) $\sigma \in S_n$ can be written as a *unique* product of disjoint cycles.
	- (vii) The order of σ is the lcm of the lengths (orders) of its disjoint cycles.
	- (viii) A **transposition** is a cycle (a_1a_2) of length two.
	- (ix) $\sigma \in S_n$ can be written as a product of transpositions. (NOT unique)
	- (x) Even Permutation & Odd Permutation

 $\sqrt{ }$

(xi) A cycle of odd length is even. & A cycle of even length is odd.

i) Closure \leftrightarrow *

III. (i) Group $(G, *)$ \int ii) Associativity $\rightsquigarrow \oslash$

iii) Identity: Uniqueness by Associativity

 $\overline{\mathcal{L}}$ iv) Inverses: Uniqueness by Associativity

- eg. $(\mathbf{R}^{\times},\cdot)$, $(\text{Sym}(S),\circ)$, $(M_n(\mathbf{R}), +_{\text{matrix}})$, $(\text{GL}_n(\mathbf{R}), \cdot_{\text{matrix}})$
- (ii) Cancellation law
- (iii) Abelian group: eg. $(\mathbf{Z}, +), (\mathbf{Z}_n, +), (\mathbf{Z}_n^{\times}, \cdot)$
- (iv) Finite group (order) v.s. Infinite group

 $\sqrt{ }$

(v) Conjugacy: $x \sim y$ if $y = axa^{-1} \rightarrow \text{Equivalence relation}$

Closure

- IV. (i) Subgroup H : \int $\overline{\mathcal{L}}$ Identity Inverses $\begin{array}{l} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array} \end{array}$
	- Alternative way: H is nonempty and $ab^{-1} \in H$ for all $a, b \in H$
- If H is finite, then H is nonempty and $ab \in H$ for all $a, b \in H$
- e.g.: $\mathbf{Z} \subseteq \mathbf{Q} \subseteq \mathbf{R} \subseteq \mathbf{C}; \, \mathbf{R}^+ \subseteq \mathbf{R}^{\times}; n\mathbf{Z} \subseteq \mathbf{Z}; \, \text{SL}_n(\mathbf{R}) \subseteq \text{GL}_n(\mathbf{R}).$
- (ii) Cyclic subgroup $\langle a \rangle$ is the **smallest** subgroup of G containing $a \in G$. e.g.: $\langle i \rangle \subseteq \mathbb{C}^\times \& \langle 2i \rangle \subseteq \mathbb{C}^\times; \langle (123) \rangle \subseteq S_3 \& \langle (12) \rangle \subseteq S_3.$
- (iii) G is cyclic if $G = \langle a \rangle$.

e.g.: $\mathbf{Z}, \ \mathbf{Z}_n, \ \mathbf{Z}_5^{\times}$. not e.g.: $\mathbf{Z}_8^{\times}, \ S_3$.

- (iv) $o(a) = |\langle a \rangle|$. If $o(a) = n$ is finite, then $a^k = e \Leftrightarrow n | k$.
- (v) Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then $|H| \mid n$. • $o(a)|n$ for any $a \in G$. $\leadsto a^n = e \dashrightarrow$ Euler's theorem
	- Any group of prime order is cyclic (and so abelian).
		- \rightsquigarrow Any group of order 2, 3, or 5 must be cyclic.
- V. (i) Groups of order 4 are abelian: cyclic $[\mathbf{Z}_4]$ vs. non-cyclic $[\mathbf{Z}_8^{\times}]$
	- (ii) Groups of order 6: abelian (cyclic) $[\mathbf{Z}_6]$ vs. nonabelian $[S_3]$
	- (iii) Product of two subgroups: HK is not always a subgroup of G . If $h^{-1}kh \in K$ for all $h \in H$ and $k \in K$, then HK is a subgroup of G.
- If H is finite, then H is nonsingly and $ab \in H$ for sall $a, b \in H$

(ii) $Q_2 \otimes b \leq Q_2 \leq P_2 \leq Q_2$ is $Q_3 \leq P_3 \leq Q_3$ (ii) $Q_3 \otimes b \leq P_3$ (iii) $Q_4 \otimes b \leq P_4$ (iii) $Q_5 \otimes b \leq P_5$ (iii) $Q_6 \otimes b \leq P_7$ (iii) (iv) If G is abelian, then the product of any two subgroups is again a subgroup. $[a\mathbf{Z} + b\mathbf{Z} = (a, b)\mathbf{Z}]$
	- (v) If G is a finite group, then $|HK| = |H||K|/|H \cap K|$.
	- (vi) Direct product of two groups: $G_1 \times G_2$ is a group under a new defined operation.
	- (vii) $o((a_1, a_2)) = \text{lcm}[o(a_1), o(a_2)]$
	- (viii) If G_1, G_2 are finite groups, then $|G_1 \times G_2| = |G_1| \cdot |G_2|$.
	- (ix) $\mathbf{Z}_n \times \mathbf{Z}_m$ is cyclic if and only if $gcd(n, m) = 1$.
	- (x) Subgroup generated by S: $\langle S \rangle$ is the smallest subgroup that contains S.
	- (xi) Definition of a field and New groups defined over a filed F. $[\mathbf{Z}_p; \text{ GL}_n(F)]$

Other resources for review: Your class notes & Lecture Slides/Recordings & Homework

Good luck for the test!