Exam I Review

Except part V, all the other parts come from the *review* in each lecture slide.

- I. (i) $(a, b) \& [a, b] \dashrightarrow (a, b) \cdot [a, b] = ab$ (ii) (a,b)|(am+bn), linear combination of a and b (iii) Division Algorithm \rightarrow The Euclidean Algorithm (matrix form) (iv) $(a,b) = 1 \Leftrightarrow am + bn = 1$ for some $m, n \in \mathbb{Z}$ (v) If b|ac and $(a,b) = 1 \Rightarrow b|c$ (vi) $a \equiv b \pmod{n} \Leftrightarrow n \mid (a-b) \Leftrightarrow a = b + qn \Leftrightarrow [a]_n = [b]_n$ (vii) If $ac \equiv ad \pmod{n}$ and (a, n) = 1 (i.e., $a \in \mathbb{Z}_n^{\times}$) $\Rightarrow c \equiv d \pmod{n}$ (viii) Divisor of zero v.s. Unit (Cancellation law \checkmark) in \mathbf{Z}_n (ix) Linear congruence $ax \equiv b \pmod{n}$ has a solution $\Leftrightarrow (a, n)|b|$ (x) System of congruences: Chinese Remainder Theorem (xi) For $[a] \in \mathbf{Z}_n^{\times}$, find $[a]^{-1}$: (1) the Euclidean algorithm (2) successive powers (3) trial and error (xii) Euler's totient function $\varphi(n) = \#\{a: (a, n) = 1, 1 \le a \le n\} = \#|\mathbf{Z}_n^{\times}|$
 - (xiii) Euler's theorem $-\rightarrow$ Fermat's "little" theorem
- II. (i) Permutation $\sigma \in \text{Sym}(S)$ (or S_n)
 - (ii) $\#|S_n| = n!$
 - (iii) Composition (Product) $\sigma\tau$ & Inverse σ^{-1}
 - (iv) Cycle of length k: $\sigma = (a_1 a_2 \cdots a_k)$ has order k.
 - (v) Disjoint cycles are commutative
 - (vi) $\sigma \in S_n$ can be written as a *unique* product of disjoint cycles.
 - (vii) The order of σ is the **lcm** of the lengths (orders) of its disjoint cycles.
 - (viii) A transposition is a cycle (a_1a_2) of length two.
 - (ix) $\sigma \in S_n$ can be written as a product of transpositions. (NOT unique)
 - (x) Even Permutation & Odd Permutation
 - (xi) A cycle of odd length is even. & A cycle of even length is odd.

(i) Group (G, *) $\begin{cases}
i) & \text{Closure } \leftrightarrow \circ * \\
ii) & \text{Associativity } \leftrightarrow \swarrow \\
iii) & \text{Identity: Uniqueness by Associativity} \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots \\
\end{cases}$

Inverses: Uniqueness by Associativity

- eg. $(\mathbf{R}^{\times}, \cdot)$, $(\text{Sym}(S), \circ)$, $(M_n(\mathbf{R}), +_{\text{matrix}})$, $(\text{GL}_n(\mathbf{R}), \cdot_{\text{matrix}})$
- (ii) Cancellation law

III.

- (iii) Abelian group: eg. $(\mathbf{Z}, +), (\mathbf{Z}_n, +_{[]}), (\mathbf{Z}_n^{\times}, \cdot_{[]})$
- (iv) Finite group (order) v.s. Infinite group
- (v) Conjugacy: $x \sim y$ if $y = axa^{-1} \rightsquigarrow$ Equivalence relation

- (no worry about associativity) (i) Subgroup H: $\begin{cases} Closure \\ Identity \\ Inverses \end{cases}$ IV.
 - Alternative way: H is nonempty and $ab^{-1} \in H$ for all $a, b \in H$

- If *H* is finite, then *H* is nonempty and $ab \in H$ for all $a, b \in H$
- e.g.: $\mathbf{Z} \subseteq \mathbf{Q} \subseteq \mathbf{R} \subseteq \mathbf{C}$; $\mathbf{R}^+ \subseteq \mathbf{R}^{\times}$; $n\mathbf{Z} \subseteq \mathbf{Z}$; $\mathrm{SL}_n(\mathbf{R}) \subseteq \mathrm{GL}_n(\mathbf{R})$.
- (ii) Cyclic subgroup $\langle a \rangle$ is the **smallest** subgroup of G containing $a \in G$. e.g.: $\langle i \rangle \subseteq \mathbf{C}^{\times} \& \langle 2i \rangle \subseteq \mathbf{C}^{\times}; \langle (123) \rangle \subseteq S_3 \& \langle (12) \rangle \subseteq S_3.$
- (iii) G is cyclic if $G = \langle a \rangle$.

e.g.: $\mathbf{Z}, \ \mathbf{Z}_n, \ \mathbf{Z}_5^{\times}$. not e.g.: $\mathbf{Z}_8^{\times}, \ S_3$.

- (iv) $o(a) = |\langle a \rangle|$. If o(a) = n is finite, then $a^k = e \Leftrightarrow n|k$.
- (v) Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then |H| | n. • o(a)|n for any $a \in G$. $\rightsquigarrow a^n = e \dashrightarrow$ Euler's theorem
 - Any group of prime order is cyclic (and so abelian).
 - \rightsquigarrow Any group of order 2, 3, or 5 must be cyclic.
- V. (i) Groups of order 4 are abelian: cyclic $[\mathbf{Z}_4]$ vs. non-cyclic $[\mathbf{Z}_8^{\times}]$
 - (ii) Groups of order 6: abelian (cyclic) $[\mathbf{Z}_6]$ vs. nonabelian $[S_3]$
 - (iii) Product of two subgroups: HK is not always a subgroup of G. If $h^{-1}kh \in K$ for all $h \in H$ and $k \in K$, then HK is a subgroup of G.
 - (iv) If G is abelian, then the product of any two subgroups is again a subgroup. $[a\mathbf{Z} + b\mathbf{Z} = (a, b)\mathbf{Z}]$
 - (v) If G is a finite group, then $|HK| = |H||K|/|H \cap K|$.
 - (vi) Direct product of two groups: $G_1 \times G_2$ is a group under a new defined operation.
 - (vii) $o((a_1, a_2)) = \operatorname{lcm}[o(a_1), o(a_2)]$
 - (viii) If G_1, G_2 are finite groups, then $|G_1 \times G_2| = |G_1| \cdot |G_2|$.
 - (ix) $\mathbf{Z}_n \times \mathbf{Z}_m$ is cyclic if and only if gcd(n,m) = 1.
 - (x) Subgroup generated by S: $\langle S \rangle$ is the smallest subgroup that contains S.
 - (xi) Definition of a field and New groups defined over a filed F. $[\mathbf{Z}_p; \operatorname{GL}_n(F)]$

Other resources for review: Your class notes & Lecture Slides/Recordings & Homework

Good luck for the test!