§ 11.5: Area/Length in Polar Coordinates

Area of the Fan-Shaped Region Between the Origin and the Curve $r=f(\theta), \alpha \leq \theta \leq \beta$

$$A = \int_{\alpha}^{\beta} \frac{1}{2} r^2 \, d\theta$$

This is the integral of the area differential

$$dA = \frac{1}{2}r^2 d\theta = \frac{1}{2} (f(\theta))^2 d\theta.$$

Example 1: Find the area of the region in the xy-plane enclosed by the cardioid

$$r = 2(1 + \cos \theta)$$

Area of the Region $0 \le r_1(\theta) \le r \le r_2(\theta), \alpha \le \theta \le \beta$

$$A = \int_{\alpha}^{\beta} \frac{1}{2} r_2^2 d\theta - \int_{\alpha}^{\beta} \frac{1}{2} r_1^2 d\theta = \boxed{\int_{\alpha}^{\beta} \frac{1}{2} (r_2^2 - r_1^2) d\theta}$$

Example 2: Find the area of the region that lies inside the circle r = 1 and outside the cardioid $r = 1 - \cos \theta$.

If $r = f(\theta)$ has a continuous first derivative for $\alpha \leq \theta \leq \beta$ and if the pt $P(r, \theta)$ traces the curve $r = f(\theta)$ exactly once as θ runs from α to β , then the length of the curve is

$$L = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \, d\theta.$$

Proof: $x = r \cos \theta = f(\theta) \cos \theta$, $y = r \sin \theta = f(\theta) \sin \theta$, $\alpha \le \theta \le \beta$. Then we have

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} d\theta = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta.$$

Example 3: Find the length of the cardioid $r = 1 - \cos \theta$.

