
§ 10.8: Taylor and Maclaurin Series
Question: Can we also express functions of different forms as power series?
If we assume that a function f(x) with derivatives of all orders is the sum of a power
series about x = a then we can readily solve for the coefficients cn. Suppose

f(x) =
∞∑

n=0
cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · ·

with positive radius of converges R. By repeated term-by-term differentiation within
the interval of convergence, we obtain:

f ′(x) = 1 · c1 + 2 · c2(x− a) + 3 · c3(x− a)2 + 4 · c4(x− a)3 + · · ·+ n · cn(x− a)n−1 + · · ·

f ′′(x) = 2 · 1 · c2 + 3 · 2 · c3(x− a) + 4 · 3 · c4(x− a)2 + · · ·+ n · (n− 1) · cn(x− a)n−2 + · · ·

f ′′′(x) = 3 · 2 · 1 · c3 + 4 · 3 · 2 · c4(x− a) + · · ·+ n · (n− 1) · (n− 2) · cn(x− a)n−3 + · · ·

=...

Since x = a is in the assumed interval of convergence, all of the above equations are
valid when x = a:

f(a) = c0, f ′(a) = 1 · c1, f ′′(a) = 2 · 1 · c2, f ′′′(a) = 3 · 2 · 1 · c3, f (n)(a) = n! · cn

Solving for each ck gives:

c0 = f(a), c1 = f ′(a)
1 , c2 = f ′′(a)

2 · 1 , c3 = f ′′′(a)
3 · 2 · 1 , · · · cn = f (n)(a)

n!

Thus, if f(x) has such a series representation, it must have the form

f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + · · ·+ f (n)(a)

n! (x− a)n + · · · =
∞∑

n=0

f (n)(a)
n! (x− a)n.
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Definitions: Let f(x) be a function with derivatives of all orders throughout some
open interval containing a. Then the Taylor Series generated by f(x) at x = a is

∞∑
n=0

f (n)(a)
n! (x− a)n = f(a) + f ′(a)(x− a) + f ′′(a)

2! (x− a)2 + · · ·+ f (n)(a)
n! (x− a)n + · · · .

The Maclaurin Series of f is the Taylor series generated by f at x = 0, that is,

∞∑
n=0

f (n)(0)
n! xn = f(0) + f ′(0)x + f ′′(0)

2! x2 + · · ·+ f (n)(0)
n! xn + · · · .

Note: The Maclaurin series generated by f is often just called the Taylor series of f .
Example 1: Find the Taylor series generated by f(x) = 1

x
at a = 2. Where does the

series converge to 1
x
?

n f (n)(x) f (n)(a)

0 x−1 1
2

1 (−1) · x−2 (−1) 1
22

2 (−1)22 · 1 · x−3 (−1)22 · 1
23

3 (−1)33 · 2 · 1 · x−4 (−1)33 · 2 · 1
24

n (−1)n · n!
xn+1 (−1)n n!

2n+1

So, the Taylor Series generated by f(x) = 1
x
centred at a = 2 is given by

∞∑
n=0

f (n)(a)
n! (x− a)n =

∞∑
n=0

(−1)n n!
2n+1

n! (x− 2)n =
∞∑

n=0

(−1)n

2n+1 (x− 2)n

This is a geometric series with ratio r = −x− 2
2 . So it converges absolutely for

∣∣∣∣∣−x− 2
2

∣∣∣∣∣ < 1 =⇒ |x− 2| < 2 =⇒ 0 < x < 4. And its sum is 1/2
1 + (x− 2)/2 = 1

x
.

Check the endpoints (In fact, this is not necessary due to the fact of geometric series):

x = 0: · · · =
∞∑

n=0

1
2 ⇒ diverges. x = 4: · · · =

∞∑
n=0

(−1)n

2 ⇒ diverges.

Thus the only values of x for which this Taylor Series converges are 0 < x < 4 .

Page 2 of 4



§ 10.8: Taylor and Maclaurin Series MATH 142

Definition: Let f(x) be a function with derivatives of order 1, . . . , N in some open in-
terval containing a. Then for any integer n from 0 through N , the Taylor polynomial
of order n generated by f at x = a is the polynomial

Pn(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + · · ·+ f (n)(a)

n! (x− a)n.

Note: • Just as the linearization of f(x) at x = a provides the best linear approxima-
tion of f(x) in a neighbourhood of a, the higher-order Taylor polynomials provide the
“best” polynomial approximations of their respective degrees.
•We speak of a Taylor polynomial of order n rather than degree n because f (n)(a) may
be zero. (See example below.)
Example 2: Find the Taylor Series and Taylor polynomials generated by f(x) = cos(x)
at x = 0. n f (n)(x) f (n)(a)

0 cos(x) 1
1 − sin(x) 0
2 − cos(x) −1
3 sin(x) 0
4 cos(x) 1

2n (−1)n cos(x) (−1)n

2n + 1 (−1)n+1 sin(x) 0
The Taylor Series generated by f(x) = cos(x) at x = 0 (the Maclaurin series for cos x)

∞∑
n=0

f (n)(a)
n! (x− a)n =

∞∑
n=0

(−1)n

(2n)! x2n · · · · · · (This is an even function. X)

To find the interval of convergence, we can use the Ratio Test:
∣∣∣∣∣an+1

an

∣∣∣∣∣ = · · · = x2

(2n + 2)(2n + 1)
n→∞−→ 0

So this Taylor Series converges for all x ∈ R. Finally, the Taylor polynomials of order
2n (and 2n + 1) [both have degree 2n] are given by:

P2n(x) =
n∑

k=0

(−1)k

(2k)! x2k = 1−x2

2 + x4

24−· · ·+(−1)n x2n

(2n)!
!= P2n+1(x) · · · (∵ f (2n+1)(0) = 0)
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Example 3: Find the Maclaurin Series (Taylor series at x = 0) generated by f(x) =
sin(x).
Here we will just invoke the power of integration: Since

ˆ x

0
cos(t) dt = sin(x) and

ˆ x

0

(−1)n

(2n)! t2n dt = (−1)n

(2n)! ·
t2n+1

(2n + 1)

∣∣∣∣∣∣∣
x

0

= (−1)n

(2n + 1)!t
2n+1

∣∣∣∣∣∣∣
x

0

= (−1)n

(2n + 1)!x
2n+1,

Thus, we have the Taylor Series generated by f(x) = sin(x) at x = 0 is
ˆ x

0

∞∑
n=0

(−1)n

(2n)! t2n dt =
∞∑

n=0

(−1)n

(2n + 1)!x
2n+1

Finally, the Taylor polynomials of order 2n + 1 (and 2n + 2) [both have degree 2n + 1]
are given by:

P2n+1(x) =
n∑

k=0

(−1)k

(2k + 1)!x
2k+1 = x− x3

3! + x5

5! − · · ·+ (−1)n x2n+1

(2n + 1)!
!=P2n+2(x) · · · · · · (∵ f (2n+2)(0) = 0)

Example 4: Find the Taylor series and the Taylor polynomials generated by f(x) = ex

at x = 0.
Note that f (n)(x) = f(x) = ex for every positive integer n. So f (n)(0) = e0 = 1 for
each n, so then the Taylor Series generated by f(x) = ex at x = 0 is given by

∞∑
n=0

f (n)(a)
n! (x− a)n =

∞∑
n=0

xn

n!

The Taylor polynomial of order n (degree n) at x = 0 is Pn(x) = 1 + x + x2

2 + · · ·+ xn

n! .
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