
§ 10.7: Power Series
Definition: A power series about x = 0 is a series of the form

∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + · · ·+ cnx
n + · · · .

A power series about x = a is a series of the form
∞∑

n=0
cn (x− a)n = c0 + c1 (x− a) + c2 (x− a)2 + · · ·+ cn (x− a)n + · · ·

in which the center a and the coefficients c0, c1, c2, . . . , cn, . . . are constants.

Example 1: Taking all the coefficients to be 1 in the power series centered at x = 0
gives the geometric power series (first term a = 1 and ratio r = x):
∞∑

n=0
xn = 1 + x+ x2 + x3 + · · ·+ xn + · · · = 1

1− x , which converges for |x| < 1.

One of the most important questions we can ask about a power series is

“for what values of x will the series converge?”

Since power series are functions, what we are really asking here is

“what is the domain of the power series?”

Example 2: Consider the power series
∞∑

n=0

(
−1

2

)n

(x− 2)n =
∞∑

n=0

(
−x− 2

2

)n

= 2
x
, which converges for 0 < x < 4.

Center: a = 2, cn =
(
−1

2

)n

; Ratio: r = −x− 2
2 .

The series converges when |r| < 1, that is,∣∣∣∣∣−x− 2
2

∣∣∣∣∣ < 1 ⇒
∣∣∣∣∣x− 2

2

∣∣∣∣∣ < 1 ⇒ |x− 2| < 2 ⇒ −2 < x− 2 < 2 ⇒ 0 < x < 4.
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Ex 3: Use the Ratio Test to see for what values of x do the following series converge?

(a)
∞∑

n=1
(−1)n−1x

n

n

∣∣∣∣∣an+1

an

∣∣∣∣∣ =
∣∣∣∣∣∣(−1)n x

n+1

n+ 1 ·
n

(−1)n−1xn

∣∣∣∣∣∣ = |x| n

n+ 1
n→∞−→ |x|

Ratio test
99K


The series converges absolutely when |x| < 1

The series diverges when |x| > 1

It remains to see what happens at the endpoints (|x| = 1): x = −1 and x = 1.

x = −1:
∞∑

n=1
(−1)n−1 (−1)n

n
=
∞∑

n=1

(−1)2n−1

n
=
∞∑

n=1

−1
n

= −
∞∑

n=1

1
n

⇒ the series diverges.

x = 1:
∞∑

n=1
(−1)n−11n

n
=
∞∑

n=1

(−1)n−1

n
 the alternating harmonic series ⇒ converges.

So, the series
∞∑

n=1
(−1)n−1x

n

n
converges for −1 < x ≤ 1 and diverges elsewhere.

(b)
∞∑

n=0

xn

n!
∣∣∣∣∣an+1

an

∣∣∣∣∣ =
∣∣∣∣∣∣ xn+1

(n+ 1)! ·
n!
xn

∣∣∣∣∣∣ = |x|
n+ 1

n→∞−→ 0 < 1

Ratio test
99K the series converges absolutely for all values of x : −∞ < x <∞.

The Convergence Theorem for Power Series: If the power series
∞∑

n=0
anx

n con-

verges at x = c 6= 0, then it converges absolutely for all x with |x| < |c|. If the series
diverges at x = d, then it diverges for all x with |x| > |d|.

 A power series
∑
cn(x− a)n behaves in one of three possible ways:

It might converge



on some interval of radius R.

everywhere.

only at x = a.
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The Radius of Convergence of a Power Series: The convergence of the series∑
cn(x− a)n is described by one of the following three cases:

1. There is a positive number R such that the series diverges for x with |x− a| > R

but converges absolutely for x with |x− a| < R.
As for the endpoints x = a−R and x = a+R, we need to discuss them separately.

2. The series converges absolutely for every x (i.e., R =∞).

3. The series converges only at x = a and diverges elsewhere (i.e., R = 0).

R is called the radius of convergence of the power series, and the interval of radius R
centered at x = a is called the interval of convergence. The interval of convergence
may be open, closed or half open, depending on the series at endpoints.

How to test a Power Series for Convergence:

1. Use Ratio (or Root) Test to find the interval where the series converges absolutely.
Ordinarily, this is an open interval |x− a| < R or a−R < x < a+R.

2. If R < ∞, test for convergence or divergence at each endpoint (|x − a| = R).
(Comparison Test, Integral Test, Alternating Series Test.)

Example 4: Find the interval and radius of convergence for
∞∑

n=1

xn

n
√
n3n

=
∞∑

n=1

xn

n3/23n
.

Ratio Test (or Root test):

lim
n→∞

∣∣∣∣∣∣ xn+1

(n+ 1)3/23n+1 ·
n3/23n

xn

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣ xn3/2

(n+ 1)3/23

∣∣∣∣∣∣ = |x|3 lim
n→∞

(
n

n+ 1

)3/2
= |x|3 .

So the series converges absolutely when |x|3 < 1 ⇒ |x| < 3 ⇒ −3 < x < 3.
Check the endpoints:

x = −3:
∞∑

n=1

(−3)n

n3/23n
=
∞∑

n=1

(−1)n

n3/2 which is an alternating p-series with p = 3
2 > 0,

so it converges.

x = 3:
∞∑

n=1

3n

n3/23n
=
∞∑

n=1

1
n3/2 which is a p-series with p = 3

2 > 1, so it converges.

Thus the interval of convergence is [−3, 3] and the radius of convergence is R = 3.
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Operations on Power Series: On the intersection of their intervals of convergence,
two power series can be added and subtracted term by term just like series of con-
stants. They can be multiplied just as we multiply polynomials, but we often limit
the computation of the product to the first few terms, which are the most important.

The Series Multiplication Theorem for Power Series: If A(x) =
∞∑

n=0
anx

n and

B(x) =
∞∑

n=0
bnx

n converge absolutely for |x| < R, and

cn = a0bn + a1bn−1 + a2bn−2 + · · ·+ an−1b1 + anb0 =
n∑

k=0
akbn−k,

then
∞∑

n=0
cnx

n converges absolutely to A(x)B(x) for |x| < R:
 ∞∑

n=0
anx

n

 ·
 ∞∑

n=0
bnx

n

 =
∞∑

n=0
cnx

n.

We can also substitute a function f(x) for x in a convergent power series:

Theorem: If
∞∑

n=0
anx

n converges absolutely for |x| < R, then
∞∑

n=0
an (f(x))n converges

absolutely for any continuous function f(x) with |f(x)| < R.

For example: Since 1
1− x =

∞∑
n=0

xn converges absolutely for |x| < 1, it follows that

1
1− 4x2 =

∞∑
n=0

(4x2)n =
∞∑

n=0
4nx2n

converges absolutely for |4x2| < 1 or |x| < 1
2 .

The Term-by-Term Differentiation Theorem: If
∑
cn(x− a)n has radius of con-

vergence R > 0, it defines a function f(x) =
∞∑

n=0
cn (x− a)n on a − R < x < a + R.

Then this function f(x) has derivatives of all orders inside the interval:

f ′(x) =
∞∑

n=1
ncn (x− a)n−1 ,

f ′′(x) =
∞∑

n=2
n(n− 1)cn(x− a)n−2,

...

and so on. Each of these series converge at every point of the interval a−R < x < a+R.
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Be Careful!! Term-by-Term differentiation might not work for other kinds of series.
For example, the trigonometric series

∞∑
n=1

sin(n3x)
n2 converges for all x.

But if we differentiate term by term we get the series
∞∑

n=1
n cos(n3x) which diverges for all x.

This is not a power series since it is not a sum of positive integer powers of x.

Example 5: Find series for f ′(x) and f ′′(x) if

f(x) = 1
1− x = 1 + x+ x2 + x3 + x4 + · · ·+ xn + · · · =

∞∑
n=0

xn, −1 < x < 1.

f ′(x) = 1
(1− x)2 = 1 + 2x+ 3x2 + 4x3 + · · ·+ nxn−1 + · · · =

∞∑
n=1

nxn−1, −1 < x < 1.

f ′′(x) = 2
(1− x)3 = 2 + 6x+ 12x2 + · · ·+ n(n− 1)xn−2 + · · · =

∞∑
n=2

n(n− 1)xn−2,−1 < x < 1.

Term-by-Term Integration Theorem: Suppose that f(x) =
∞∑

n=0
cn(x − a)n con-

verges for a−R < x < a+R. Then,
∞∑

n=0
cn

(x− a)n+1

n+ 1 converges for a−R < x < a+R

and
ˆ
f(x) dx =

∞∑
n=0

cn
(x− a)n+1

n+ 1 + C for a−R < x < a+R.

Example 6: Given 1
1 + t

= 1− t+ t2− t3 + · · · converges on −1 < t < 1, find a series
representation for f(x) = ln(1 + x).

Page 5 of 6



§ 10.7: Power Series MATH 142

ln(1 + x) =
ˆ x

0

1
1 + t

dt · · · · · · 1
1 + x

= 1
1− (−x) =

∞∑
n=0

(−1)nxn

= t− t2

2 + t3

3 −
t4

4 + · · ·
∣∣∣∣∣∣∣
x

0

· · · · · ·
ˆ ∞∑

n=0
(−1)nxn dx

= x− x2

2 + x3

3 −
x4

4 + · · · =
∞∑

n=0
(−1)n x

n+1

n+ 1 + C

=
∞∑

n=1

(−1)n+1xn

n
,−1 < x < 1. (C = 0 by checking x = 0)

Example 7: Identify the function f(x) such that

f(x) =
∞∑

n=0

(−1)nx2n+1

2n+ 1 = x− x3

3 + x5

5 −
x7

7 + · · · , −1 < x < 1.

Differentiate

f ′(x) = 1− x2 + x4 − x6 + · · · =
∞∑

n=0
(−1)nx2n =

∞∑
n=0

(−x2)n, −1 < x < 1.

This is a geometric series with first term 1 and ratio −x2, so

f ′(x) = 1
1− (−x2) = 1

1 + x2 .

Now we can integrate to get:
ˆ
f ′(x) dx = arctan(x) + C.

Since f(0) = 0, we have 0 = arctan(0) + C = C, so then

f(x) =
∞∑

n=0

(−1)nx2n+1

2n+ 1 = arctan(x) − 1 < x < 1.

In particular, take x = 1 (the series converges by A.S.T.) and then we have

arctan(1) = π

4 =
∞∑

n=0

(−1)n

2n+ 1 = 1− 1
3 + 1

5 −
1
7 + · · ·
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