§ 10.6: The Alternating Series Test

Definition: A series whose terms alternate between positive and negative is called an **alternating series**. The n^{th} term of an alternating series is of the form

 $a_n = (-1)^{n+1}b_n$ or $a_n = (-1)^n b_n$, where $b_n = |a_n|$ is a positive number.

The Alternating Series Test: The series

$$\sum_{n=1}^{\infty} (-1)^{n+1} b_n = b_1 - b_2 + b_3 - b_4 + \cdots, \qquad b_n > 0.$$

converges if the following two conditions are satisfied:

- 1. Nonincreasing: $b_n \ge b_{n+1}$ for all $n \ge N$, for some integer N,
- 2. $\lim_{n \to \infty} b_n = 0.$

Example 1: The alternating harmonic series

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$
 (converges)

Example 2: Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}n}{n^2+16}$.

Recall that a convergent series that is not absolutely convergent is **conditionally convergent**.

If p is a positive constant, the sequence $\frac{1}{n^p}$ is a decreasing sequence with limit zero. Therefore, the *alternating* p-series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^p} = 1 - \frac{1}{2^p} + \frac{1}{3^p} - \frac{1}{4^p} + \dots, \quad (p > 0) \qquad \text{(converges)}$$

Moreover, by the ordinary *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$, which is convergent if p > 1 and divergent if $p \le 1$, we conclude

- If p > 1, the alternating *p*-series converges absolutely.
- If 0 , the alternating*p*-series converges conditionally.

The Rearrangement Theorem for Absolutely Convergent Series: If $\sum a_n$ converges absolutely and $b_1, b_2, \ldots, b_n \ldots$ is any arrangement of the sequence $\{a_n\}$, then $\sum b_n$ converges absolutely and $\sum b_n = \sum a_n$.

This (rearrangement) theorem doesn't hold for a *conditionally convergent series*.

Convergence Tests for Series:

(1) Partial Sums (particularly with telescoping series)	$(\S 10.2)$
(2) The <i>n</i> th-Term Test for Divergence	(§ 10.2)
(3) Geometric Series Test & Geometric series sum formula	(§ 10.2)
(4) p -Series Test	(§ 10.3)
(5) Integral Test & Remainder Theorem for the Integral Test	(§ 10.3)
(6) Direct Comparison Test & Limit Comparison Test	(§ 10.4)
(7) Ratio Test & Root Test	(§ 10.5)
(8) Alternating Series Test	(§ 10.6)