§ 10.2: Infinite Series

Definitions: Given a sequence of numbers ${a_n}_{n=1}^{\infty}$, an expression of the form

$$
\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots
$$

is an **infinite series**. a_n is the n^{th} **term** of the series. The sequence $\{S_n\}_{n=1}^{\infty}$ defined by

$$
S_n := \sum_{k=1}^n a_k = a_1 + a_2 + a_3 + \dots + a_n
$$

is called the **sequence of partial sums** of the series, S_n being the n^{th} **partial sum**. If the sequence of partial sums converges to a limit *L*, we say that the series **converges** and that the **sum** is *L*. In this case we write

$$
\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots = \lim_{n \to \infty} S_n = L.
$$

If the sequence of partial sums of the series does not converge, then the series **diverges**. A **geometric series** is of the form

$$
a + ar + ar2 + ar3 + \dots + arn + \dots = \sum_{n=1}^{\infty} ar^{n-1}
$$
 (

where *a* and *r* are fixed real numbers and $a \neq 0$. The **ratio** *r* can be positive or negative. i) If $r = 1$, the nth partial sum of the geometric series is

ii) If $r = -1$, the series diverges since the nth partial sums alternate between *a* and 0.

iii) If $|r| \neq 1$, then we use the following "trick":

Example 2: Consider the series Σ ∞ *n*=0 $(-1)^{n}5$ $\frac{1}{4^n}$.

Example 3: Express the repeating decimal 5*.*232323 *. . .* as the ratio of two integers.

Example 4!!: Find the sum of the **telescoping series**

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}.
$$

Theorem: If the series Σ ∞ *n*=1 a_n converges, then $\lim_{n \to \infty} a_n = 0$. **Proof:** Suppose S_n converges to *L*. Then S_{n-1} also converges to *L*. Thus

$$
\lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1}) = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = L - L = 0.
$$

The converse of this theorem is **not** true! (eg. in § 10.3: Harmonic Series \sum ∞ *n*=1 1 *n* diverges.)

The *n* **th Term Test for Divergence**:

The series Σ ∞ *n*=1 a_n *diverges* if $\lim_{n\to\infty} a_n$ fails to exist or is different from zero.

- i) Σ ∞ *n*=1 n^2 diverges since ii) Σ ∞ *n*=1 $(-1)^{n+1}$ diverges since
- iii) Σ ∞ *n*=1 −*n* $2n + 5$ diverges since

Combining Series: If Σ ∞ *n*=1 $a_n = A$ and \sum ∞ *n*=1 $b_n = B$ are convergent series, then 1) Sum/Difference Rule: Σ ∞ *n*=1 $(a_n \pm b_n)$ 2) Constant Multiple Rule: \sum ∞ *n*=1 *ca*_{*n*} \qquad , for any *c* ∈ R. $\text{Caution!} \sum$ ∞ $(a_n + b_n)$ can converge when both $\sum a_n$ and $\sum b_n$ diverge! $(a_n = n = -b_n)$

Example 5: Find the sums of the following series.

1.
$$
\sum_{n=1}^{\infty} \frac{3^{n-1} - 1}{6^{n-1}}
$$

n=1

2. \sum ∞ *n*=0 4 2 *n*

Adding/deleting a **finite** number of terms will not alter the convergence or divergence. eg., If Σ ∞ *n*=1 a_n converges, then Σ ∞ *n*=*k* a_n converges for any $k > 1$ and conversely also true.