§ 10.1: Sequences

A sequence is a list of numbers written in a specific order. We *index* them with positive integers, $a_1, a_2, a_3, a_4, \ldots, a_n, \ldots$ These are the **terms** of the sequence.

A sequence may be *finite* or *infinite*. We will be looking specifically at *infinite* sequences which we will denote by $\{a_n\}_{n=1}^{\infty}$. Note that a_n is called the *n*th term.

Examples:

(a)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$

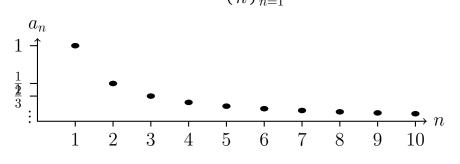
(b) $\left\{\frac{(-1)^n(n+1)}{3^n}\right\}_{n=1}^{\infty}$
(c) Fibonacci Sequence: (a recursively defined sequence)
 $\left\{\begin{array}{l} f_1 = 1\\ f_2 = 1\\ f_n = f_{n-1} + f_{n-2}, \quad n \ge 3\end{array}\right.$

(Precise Definition of a Limit of a Sequence) The sequence $\{a_n\}_{n=1}^{\infty}$ converges to the number L if for every $\varepsilon > 0$ there exists an integer N such that

$$|a_n - L| < \varepsilon$$
 for all $n \ge N$.

If no such number L exists, we say that $\{a_n\}$ diverges.

(Friendly Definition of a Limit of a Sequence) The sequence $\{a_n\}_{n=1}^{\infty}$ converges to the number L if $\lim_{n\to\infty} a_n = L$. If no such number L exists, we say that $\{a_n\}$ diverges. *Visualising a Sequence*: Plot the sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ in \mathbb{R}^2 . What do you notice?



From the plot above it looks as if the sequence is tending towards 0.

Definition: $\lim_{n \to \infty} a_n = \infty$ means that for every positive integer M, there exists an integer N such that if $n \ge N$, then $a_n > M$.

Limit Rules for Sequences:

If $a_n \to L$, $b_n \to M$, then:

1. Sum Rule: $\lim_{n \to \infty} (a_n + b_n) = ,$ 2. Constant Rule: $\lim_{n \to \infty} c =$ for any $c \in \mathbb{R},$ 3. Product Rule: $\lim_{n \to \infty} a_n \cdot b_n = ,$ 4. Quotient Rule: $\lim_{n \to \infty} \frac{a_n}{b_n} = ,$ if $M \neq 0$ 5. Power Rule: $\lim_{n \to \infty} a_n^p = ,$ if $p > 0, a_n > 0$

The Sandwich Theorem for Sequences: Let $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ and $\{c_n\}_{n=1}^{\infty}$ be three sequences such that there exists a positive integer N where

 $a_n \le b_n \le c_n$, for each $n \ge N$, and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$.

Then $\lim_{n \to \infty} b_n = L.$

Continuous Function Theorem: If $\lim_{x\to\infty} f(x) = L$ and $f(n) = a_n$ whenever n is a positive integer, then $\lim_{n\to\infty} a_n = L$.

Example: $f(x) = \frac{1}{x}$ satisfies $f(n) = a_n$ for every positive integer n, so $\lim_{n \to \infty} \frac{1}{n} = \lim_{x \to \infty} \frac{1}{x} = 0$. **Theorem:** If $\lim_{n \to \infty} |a_n| = 0$, then $\lim_{n \to \infty} a_n = 0$.

Examples of Convergent Sequences:

1.
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$

2. $\left\{\frac{\ln(n)}{n}\right\}_{n=1}^{\infty}$

3.
$$\left\{\frac{\cos(n)}{n}\right\}_{n=1}^{\infty}$$

Examples of Divergent Sequences: $\{(-1)^n\}_{n=1}^{\infty}, \{(-1)^n n\}_{n=1}^{\infty}, \{\sin(n)\}_{n=1}^{\infty}.$

Definition: *n* factorial $n! = n \cdot (n-1) \cdot (n-2) \cdots 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$. Convention: 0! = 1. **Example 1**: Find the limit of the sequence $\left\{\frac{n!}{n^n}\right\}_{n=1}^{\infty}$.

Example 2: For what values of r is the sequence $\{r^n\}_{n=1}^{\infty}$ convergent?

Commonly Occurring Limits:

1.
$$\lim_{n \to \infty} \frac{\ln n}{n} = 0.$$

2.
$$\lim_{n \to \infty} \sqrt[n]{n} = 1.$$

3.
$$\lim_{n \to \infty} x^{1/n} = 1. \qquad (x > 0, \text{ fixed})$$

4.
$$\lim_{n \to \infty} x^n = 0. \qquad (|x| < 1, \text{ fixed})$$

5.
$$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x. \qquad (\text{any } x, \text{ fixed})$$

6.
$$\lim_{n \to \infty} \frac{x^n}{n!} = 0. \qquad (\text{any } x, \text{ fixed})$$

Definitions: Two concepts that play a key role in determining the convergence of a sequence are those of a *bounded* sequences and a *monotonic* sequence.

(a) A sequence $\{a_n\}_{n=1}^{\infty}$ is **bounded from above** if there exists a number M such that $a_n \leq M$ for all n. The number M is an **upper bound** for $\{a_n\}_{n=1}^{\infty}$.

If M is an upper bound for $\{a_n\}_{n=1}^{\infty}$ but no number less than M is an upper bound for $\{a_n\}_{n=1}^{\infty}$, then M is the **least upper bound (supremum)** of $\{a_n\}_{n=1}^{\infty}$.

(b) A sequence $\{a_n\}_{n=1}^{\infty}$ is **bounded from below** if there exists a number m such that $a_n \ge m$ for all n. The number m is a **lower bound** for $\{a_n\}_{n=1}^{\infty}$.

If *m* is a lower bound for $\{a_n\}_{n=1}^{\infty}$ but no number greater than *m* is a lower bound for $\{a_n\}_{n=1}^{\infty}$, then *m* is the **greatest lower bound (infimum)** of $\{a_n\}_{n=1}^{\infty}$.

- (c) If $\{a_n\}_{n=1}^{\infty}$ is bounded from above and below then $\{a_n\}_{n=1}^{\infty}$ is **bounded**. If $\{a_n\}_{n=1}^{\infty}$ is not bounded, then we say that $\{a_n\}_{n=1}^{\infty}$ is an **unbounded** sequence.
- (d) Every convergent sequence is bounded.But not every bounded sequence converges. (consider _____).
- (e) A sequence $\{a_n\}_{n=1}^{\infty}$ is **non-decreasing** if $a_n \leq a_{n+1}$ for every n.
 - A sequence $\{a_n\}_{n=1}^{\infty}$ is **non-increasing** if $a_n \ge a_{n+1}$ for every n.

A sequence $\{a_n\}_{n=1}^{\infty}$ is **monotonic** if it is either non-decreasing or non-increasing.

The Monotonic Sequence Theorem: Every bounded, monotonic sequence converges.

Note: The Monotonic Sequence Theorem **ONLY** tells us that the limit exists, **NOT** the value of the limit.

Example 3: Does the following recursive sequence converge?

$$a_1 = 2, \quad a_{n+1} = \frac{1}{2}(a_n + 6).$$