§8.5: Integration by Partial Fractions

Method of Partial Fractions when $\frac{f(x)}{g(x)}$ is proper $(\deg f(x) < \deg g(x))$

- **0.** If the fraction is not proper, divide f(x) by g(x) and work with the remainder term.
 - 1. Let x r be a linear factor of g(x). Suppose $(x r)^m$ is the highest power of x r that divides g(x). Then, to this factor, assign the sum of the m partial fractions:

$$\frac{A_1}{(x-r)} + \frac{A_2}{(x-r)^2} + \frac{A_3}{(x-r)^3} + \dots + \frac{A_m}{(x-r)^m}$$

Do this for each distinct linear factor of g(x).

2. Let $x^2 + px + q$ be an **irreducible** quadratic factor of g(x) so that $x^2 + px + q$ has no real roots $(p^2 - 4q < 0)$. Suppose $(x^2 + px + q)^n$ is the highest power of this factor dividing g(x). Then, to this factor, assign the sum of the n partial fractions:

$$\left| \frac{B_1x + C_1}{(x^2 + px + q)} + \frac{B_2x + C_2}{(x^2 + px + q)^2} + \frac{B_3x + C_3}{(x^2 + px + q)^3} + \dots + \frac{B_nx + C_n}{(x^2 + px + q)^n} \right|$$

Do this for each distinct quadratic factor of g(x).

- 3. Set the original fraction $\frac{f(x)}{g(x)}$ equal to the sum of all these partial fractions.
- 4. Solved for the undetermined coefficients by comparing coefficients of powers of x (or strategically plugging in values).

1

Example 1 (Distinct linear factors): Compute $\int \frac{x-7}{x^2-2x-3} dx$.

Exercise 1 (Practice for Ss): Find $\int \frac{x+15}{(3x-4)(x+1)} dx$.

$$\boxed{\frac{7}{3}\ln|3x - 4| - 2\ln|x + 1| + C}$$

Example 2 (Higher power of linear factor): Find $\int \frac{5x-2}{(x+3)^2} dx$.

Example 3 (Not Proper): Evaluate $\int \frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3} dx$.

Example 4 (Quadratic factor and linear factor): Compute $\int \frac{-2x+4}{(x^2+1)(x-1)^2} dx$.

Exercise 2 (Practice for Ss): Evaluate $\int \frac{dx}{x(x^2+1)^2}$.

$$\ln|x| - \frac{1}{2}\ln|x^2 + 1| + \frac{1}{2(x^2 + 1)} + C$$

Exercise 3 (Practice for Ss): Evaluate $\int \frac{\sin \theta \, d\theta}{\cos^2 \theta + \cos \theta - 2}$

$$-\frac{1}{3}\ln|\cos\theta - 1| + \frac{1}{3}\ln|\cos\theta + 2| + C$$