https://people.math.sc.edu/shaoyun/Review_241F_SYi_Fa_21.pdf **Review for Test 1 (§12.1-12.6, §13.1-13.4)**

(1) The **distance formula** $|P_1P_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$.

 $\rightarrow \bullet$ **Equation of a sphere** centered at (a, b, c) with radius *r*:

$$
(x-a)2 + (y-b)2 + (z-c)2 = r2
$$
 (1)

- (2) The **magnitude** or **length** of $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ is $|\mathbf{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}$.
- (3) **Addition/Difference** of vectors & **Scalar multiplication** (parallel)

 \rightarrow Properties of Vector Operations

- (4) $\mathbf{v} = \langle v_1, v_2, v_3 \rangle = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$, where $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are the **standard unit vectors**.
- (5) For $\mathbf{v} \neq \mathbf{0}$, **v** |**v**| is a unit vector in the direction of **v**, called **the direction** of **v**.
- (6) The **midpoint** between points P_1 and P_2 is $M\left(\frac{x_1 + x_2}{2}\right)$ 2 *, y*¹ + *y*² 2 *, z*¹ + *z*² 2 ! .
- (7) The **dot product** $\mathbf{u} \cdot \mathbf{v} = \langle u_1, u_2, u_3 \rangle \cdot \langle v_1, v_2, v_3 \rangle = u_1v_1 + u_2v_2 + u_3v_3 = |\mathbf{u}||\mathbf{v}|\cos\theta.$
	- \rightarrow Properties of the Dot Product
		- Vectors **u** and **v** are **orthogonal** if $\mathbf{u} \cdot \mathbf{v} = 0$.
		- The **vector projection of u onto v** is

$$
\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2}\right) \mathbf{v} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}\right) \frac{\mathbf{v}}{|\mathbf{v}|} = \left(|\mathbf{u}| \cos \theta\right) \frac{\mathbf{v}}{|\mathbf{v}|} \text{ with scalar component } \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}.
$$

- **Work** $W = \mathbf{F} \cdot \mathbf{D}$ with a constant force **F** acting through a displacement **D**.
- (8) The **cross product** $\mathbf{u} \times \mathbf{v}$ is the vector

$$
\mathbf{u} \times \mathbf{v} = (|\mathbf{u}||\mathbf{v}|\sin\theta) \mathbf{n} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix},
$$
(2)

where **n** is the unit **normal vector** perpendicular to **u***,* **v** by the right-hand rule. Properties of the Cross Product (e.g., **v** × **u** = −(**u** × **v**))

- \star Nonzero vectors **u** and **v** are **parallel** if and only if $\mathbf{u} \times \mathbf{v} = 0$ *.*
- $\mathbf{v} \times |\mathbf{u} \times \mathbf{v}| = |\mathbf{u}||\mathbf{v}| \sin \theta$ is the area of the parallelogram determined by **u** and **v**.
- *** Torque** $T = r \times F$, where **r** is the vector from the axis along the lever.
- (9) The product $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$ is called the **triple scalar product** of \mathbf{u}, \mathbf{v} and \mathbf{w} :

$$
(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = \det \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{pmatrix}
$$
 (3)

 \sim $|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}|$ gives the volume of the parallelepiped determined by \mathbf{u}, \mathbf{v} , and \mathbf{w} .

(10) **A** vector equation for the line *L* through $P_0(x_0, y_0, z_0)$ parallel to v is

$$
\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v} \qquad = \mathbf{r}_0 + t|\mathbf{v}|\frac{\mathbf{v}}{|\mathbf{v}|}, \qquad -\infty < t < \infty.
$$
 (4)

The standard parametrization of *L*:

$$
x = x_0 + tv_1
$$
, $y = y_0 + tv_2$, $z = z_0 + tv_3$, $-\infty < t < \infty$. (5)

(11) Distance *d* from *S* to a line through *P* parallel to **v**:

$$
d = |\overrightarrow{PS}| \sin \theta = \frac{|\overrightarrow{PS} \times \mathbf{v}|}{|\mathbf{v}|}
$$
(6)

(12) $M = \{P : \overrightarrow{P_0P} \text{ is orthogonal to } \mathbf{n} := \langle A, B, C \rangle \}$ \longleftrightarrow $\mathbf{n} \cdot \overrightarrow{P_0P} = 0$

- \rightsquigarrow **Component equation for a plane**: $A(x x_0) + B(y y_0) + C(z z_0) = 0$
- \rightsquigarrow **simplified**: $Ax + By + Cz = D$, where $D = Ax_0 + By_0 + Cz_0$.
- (13) The line of intersection of two planes is parallel to $\mathbf{n}_1 \times \mathbf{n}_2$.
- (14) Distance from *S* to a plane through *P* with normal **n**: $d = |\overrightarrow{PS}| |\cos \theta| = |\overrightarrow{PS}|$ $\overrightarrow{PS} \cdot \mathbf{n}$ |**n**| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$
- (15) **The angle between two intersecting planes** is defined to be the **acute** angle between their normal vectors.
- (16) *Cylinders and Quadric Surfaces*[∗]
- (17) Let $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$ be a vector function. Then

$$
\lim_{t \to t_0} \mathbf{r}(t) = \left\langle \lim_{t \to t_0} f(t), \lim_{t \to t_0} g(t), \lim_{t \to t_0} h(t) \right\rangle \qquad \text{provided the limit exists.} \tag{7}
$$

 \sim **r**(*t*) is **continuous at** $t = t_0$ in its domain if $\lim_{t \to t_0} \mathbf{r}(t) = \mathbf{r}(t_0)$ *.*

- (18) The **derivative** $\mathbf{r}'(t) = \frac{d\mathbf{r}}{dt}$ $\frac{d\mathbf{t}}{dt} = \langle f'(t), g'(t), h'(t) \rangle.$
	- ∞ **r**(*t*) is **smooth** if **r**'(*t*) is continuous and never **0**.
	- $\sigma \mathbf{r}'(t) \neq \mathbf{0}$ is called the vector **tangent** to the curve at *P*.
	- \circ The **tangent line** to the curve at *P* is the line through *P* parallel to **r**'(*t*).
	- $\mathbf{r}(t)$ position vec., $\mathbf{v}(t) = \mathbf{r}'(t)$ velocity vec., $\mathbf{a}(t) = \mathbf{r}''(t)$ acceleration vec.
	- **Differentiation Rules:**

$$
\star \frac{d}{dt} \mathbf{C} = \mathbf{0}, \qquad \frac{d}{dt} [c\mathbf{u}(t)] = c\mathbf{u}'(t), \qquad \frac{d}{dt} [f(t)\mathbf{u}(t)] = f'(t)\mathbf{u}(t) + f(t)\mathbf{u}'(t)
$$
\n
$$
\star \frac{d}{dt} [\mathbf{u}(t) \pm \mathbf{v}(t)] = \mathbf{u}'(t) \pm \mathbf{v}'(t), \qquad \frac{d}{dt} [\mathbf{u}(f(t))] = f'(t)\mathbf{u}'(f(t))
$$
\n
$$
\star \frac{d}{dt} [\mathbf{u}(t) \cdot \mathbf{v}(t)] = \mathbf{u}'(t) \cdot \mathbf{v}(t) + \mathbf{u}(t) \cdot \mathbf{v}'(t)
$$
\n
$$
\star \frac{d}{dt} [\mathbf{u}(t) \times \mathbf{v}(t)] = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)
$$

 \circ If $|\mathbf{r}(t)|$ is constant for all *t*, then **r** \cdot *d***r** $\frac{du}{dt} = 0$. The converse is also true.

(19) The **indefinite integral** $\int \mathbf{r}(t) dt = \mathbf{R}(t) + \mathbf{C}$, where **R** is any antiderivative of **r**

- \circ The **definite integral** \int^{b} *a* $\mathbf{r}(t) dt =$ $\int f^b$ *a* $f(t) dt, \int_0^b$ *a* $g(t) dt, \int_0^b$ *a* $h(t) dt$.
- \circ Fundamental Theorem of Calculus \int^b $\mathbf{r}(t) dt = \mathbf{R}(t)$ *b a* $=$ **R**(*b*) $-$ **R**(*a*)
- **o** Initial value problem (IVP): $\mathbf{v}(t) = \int \mathbf{a}(t) dt$, $\mathbf{r}(t) = \int \mathbf{v}(t) dt$

 \rightarrow Projectile Motion: Maximum height $(y'(t) = 0)$, Flight time $(y(t) = 0)$ (20) The **length** of a smooth curve $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle, t \in [a, b]$, is

$$
L = \int_{a}^{b} |\mathbf{r}'(t)| dt = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt.
$$
 (8)

a

 \circ **Arc Length Parameter** *s*(*t*) with Base Point $P(t_0) = (x(t_0), y(t_0), z(t_0))$:

$$
s(t) = \int_{t_0}^t \sqrt{[x'(\tau)]^2 + [y'(\tau)]^2 + [z'(\tau)]^2} d\tau = \int_{t_0}^t |\mathbf{r}'(\tau)| d\tau \longrightarrow \frac{ds}{dt} = |\mathbf{r}'(t)|
$$

Solve for *t* in terms of *s*: \rightsquigarrow the curve can be reparametrized $\mathbf{r}(t) = \mathbf{r}(t(s)).$ \circ The **unit tangent vector** for **r**(*t*) is given by **T** = **v** |**v**| , where $\mathbf{v}(t) = \mathbf{r}'(t)$.

$$
\frac{d\mathbf{r}}{ds} = \frac{d\mathbf{r}}{dt}\frac{dt}{ds} = \mathbf{v}\frac{1}{ds/dt} = \frac{\mathbf{v}}{|\mathbf{v}|} = \mathbf{T}
$$

 $\sim d\mathbf{r}/ds$ is the unit tangent vector in the direction of the velocity vector **v**. (21) The **curvature** $\kappa =$ *d***T** *ds* $\begin{array}{c} \hline \rule{0pt}{2.2ex} \\ \rule{0pt}{2.2ex} \end{array}$, where **T** is the unit tangent vector on a smooth curve. \rightsquigarrow If **r** is smooth, then $\kappa = \frac{1}{1}$ |**v**| *d***T** *dt* $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$.

(22) The **principal unit normal** vector for a smooth curve is $N =$ 1 *κ d***T** $\frac{\partial^2 E}{\partial s}$ for $\kappa \neq 0$. \circ The vector $\frac{d\mathbf{T}}{d\mathbf{r}}$ $\frac{dS}{ds}$ (and so **N**) points toward the concave side of the curve. ∞ If **r**(*t*) is a smooth curve, then the principal unit normal is $N =$ *d***T***/dt* |*d***T***/dt*| *.* \circ **N** and **T** are orthogonal from Theorem 0.6 in §13.1 since $|\mathbf{T}| = 1$.

- **Vector Formula for Curvature:** *κ* =
	- $|\mathbf{r}'|^3$ **★** If $|\mathbf{r}'| \neq 0$ is constant, then $\mathbf{r}' \perp \mathbf{r}''$. $\rightarrow \kappa \stackrel{!}{=} \frac{|\mathbf{r}'||\mathbf{r}''||\sin 90°|}{|\mathbf{r}||\sin 90°|}$ $\frac{|{\bf r}^{\prime}|^3}{}$ = $|\mathbf{r}''|$ $|\mathbf{r}'|^2$

? Radius of Osculating Circle: *R* = 1 *κ* also called the radius of curvature.

 $|\mathbf{r}' \times \mathbf{r}''|$

Review for Test 2 (§14.1-14.7)

- (1) interior point (belongs to *R*); boundary point (may not belong to *R*);
- (2) open/closed/bounded/unbounded region *R*
- (3) level curve/surface; contour curve/surface
- (4) Properties of Limits of Functions of Two Variables
- (5) Three common ways to find the limit $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$:
	- plug in $(x, y) = (x_0, y_0)$ directly if $f(x, y)$ is continuous at (x_0, y_0)
	- simplify $f(x, y)$ by canceling zero denominator to becoming a new function, which is continuous at (*x*0*, y*0)
	- multiply by conjugate if $f(x, y)$ involves radicals, especially somthing like $\sqrt{}$
- (6) Two-Path Test for Nonexistence of a Limit
- (7) Know how to find the partial derivatives $f_x, f_y, f_{xx}, f_{xy}, f_{yy}$ etc
- (8) Know how to use Chain Rule properly to find the (partial) derivatives
- (9) Formulas for Implicit Differentiation
- (10) Know how to use Gradient ∇f to find the directional derivatives $D_{\mathbf{u}}f$
- (11) Properties of Directional Derivative $D_{\mathbf{u}}f$
- (12) The gradient of *f* is normal to the level curve through (x_0, y_0) , i.e., $\nabla f \cdot \frac{d\mathbf{r}}{dt} = 0$
- (13) Tangent Line (resp. Plane) to a Level Curve (resp. Surface); Normal line *//* Gradient ∇*f*
- (14) Algebra Rules for Gradients
- (15) The Chain Rule for Paths: for example, $\frac{d}{dt}f(\mathbf{r}(t)) = \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t)$ for $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$
- (16) Estimating the Change in *f* in a Direction **u**; standard linear approximation; (total) differential
- (17) Second Derivative Test for Local Extreme Values
- (18) Absolute maxima/minima of $f(x, y)$ on closed bounded region & Application in real life example

Review for Test 3 (§15.1-15.5, 15.7, 16.1-16.2)

(1) Double Integrals: \iint *R* $\int dx dy$, \int *R* $f dy dx, \quad \iint$ *R* $fr dr d\theta \longrightarrow$ Find limits of integration (2) Triple Integrals: \iiint *D F* dz dy dx, \iiint *D* $F\,dz\,r\,dr\,d\theta,$ *D* $F \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta \, \rightsquigarrow$ Limits of integration (3) Area \longleftrightarrow ($f = 1$); Volume \longleftrightarrow ($F = 1$); Average value of f (resp. *F*) over *R* (resp. *D*) (4) Line Integral of f over C : *C* $f(x, y, z) ds = \int_0^b$ *a* $f(g(t), h(t), k(t))$ $|\mathbf{v}(t)| dt$ (5) Line Integral of **F** along *C*: \blacksquare *C* $\mathbf{F} \cdot \mathbf{T} ds = \int$ *C* $\mathbf{F} \cdot d\mathbf{r} = \int^b$ *a* $\mathbf{F}(\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt} dt \longrightarrow \text{Work, Circulation}$ (6) Line Integrals with Respect to *dx, dy*, or *dz* :

$$
\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt} dt = \int_{a}^{b} (Mg'(t) + Nh'(t) + Pk'(t)) dt = \int_{C} M dx + N dy + P dz
$$

Review for (§16.3-16.4)

- (1) Fundamental Theorem of Line Integrals: \int *C* $\mathbf{F} \cdot d\mathbf{r} = \int^B$ *A* $\nabla f \cdot d\mathbf{r} = f(B) - f(A)$
- (2) Conservative Fields are Gradient Fields: **F** is conservative \Leftrightarrow **F** = ∇f for some scalar function *f*.
- (3) $\mathbf{F} = \nabla f$ on $D \Leftrightarrow \mathbf{F}$ conservative on $D \Leftrightarrow \mathbf{G}$ *C* $\mathbf{F} \cdot d\mathbf{r} = 0$ over any loop in *D* (Loop Property)
- (4) Component Test for Conservative Fields: **F** is conservative $\Leftrightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}, \frac{\partial M}{\partial z} = \frac{\partial P}{\partial x}, \text{ and } \frac{\partial N}{\partial z} = \frac{\partial P}{\partial y}.$
- (5) A differential form is **exact** if $M dx + N dy + P dz = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz = df$
- (6) The differential form $M dx + N dy + P dz$ is exact $\Leftrightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}, \frac{\partial M}{\partial z} = \frac{\partial P}{\partial x}, \text{ and } \frac{\partial N}{\partial z} = \frac{\partial P}{\partial y}.$ This is equivalent to saying that the field $\mathbf{F} = \langle M, N, P \rangle$ is conservative.

(7) Green's Theorem:
$$
\oint_C \mathbf{F} \cdot \mathbf{T} ds = \oint_C M dx + N dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dx dy
$$

MyMathLab HW, Class notes, Quizzes (solutions in BB)

Good luck with the test!