Review for Final

Shaoyun Yi

MATH 141

University of South Carolina

https://people.math.sc.edu/shaoyun/Review_141F_SYi_Sp_21.pdf

Spring 2021

Function: y = f(x)

- Piecewise, Power (Polys, Rational), Trigonometric, Exponential
- Domain, Range; Interval Notation
- Increasing/Decreasing, Even/Odd $(f(-x) = \pm f(x))$

• Inverse function $\begin{cases} \text{one-to-one; Solve } y = f(x) \text{ for } x, \text{ then } x \leftrightarrow y \\ y = a^x \longleftrightarrow y = \log_a x \\ \sin(x), \cos(x), \dots \longleftrightarrow \sin^{-1}(x), \cos^{-1}(x), \dots \end{cases}$

- Composite function $(f \circ g)(x) = f(g(x))$
- Shifting/Scaling and Reflecting a Graph of a Function
- Trigonometric Identities and Formulas
- Change of Base Formulas for Exponential/Logarithmic function

$\text{Limit: } \lim_{x \to c} f(x) = L$

• Limit Laws: $f \pm g$, $k \cdot f$, $f \cdot g$, f/g, f^n , $f^{1/n}$

• If $P(x) = a_n x^n + \dots + a_0$, then $\lim_{x \to c} P(x) = P(c) = a_n c^n + \dots + a_0$.

• If P(x) and Q(x) are polys and $Q(c) \neq 0$, then $\lim_{x \to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)}$.

- Eliminate common factors from 0 denominators/Multiply by conjugate
- The Sandwich Theorem (A fact of Trig.: Range of sin, cos is [-1,1])
- $\delta \varepsilon$ language:
 - for every $\varepsilon > 0$, there exists $\delta > 0$ s.t. $0 < |x c| < \delta \Rightarrow |f(x) L| < \varepsilon$
 - Find algebraically a δ for a given f, L, c and $\varepsilon > 0$
 - Prove theorems
- $\lim_{x \to c} f(x) = L \iff \lim_{x \to c^+} f(x) = L$ and $\lim_{x \to c^-} f(x) = L$

• $\lim_{x\to\infty}$, $\lim_{x\to-\infty}$: Divide by highest power of x/Multiply by conjugate

Continuity: $\lim_{x\to c} f(x) = f(c)$

- The function f is continuous at c if $\lim_{x\to c} f(x) = f(c)$.
- Four types of discontinuities: removable, jump, infinite, oscillating
- Algebraic Combinations: $f \pm g$, $k \cdot f$, $f \cdot g$, f/g, f^n , $f^{1/n}$
- Polynomials and Rational functions (if well-defined) are continuous
- The inverse function of any continuous function on *I* is continuous
- All composites of continuous functions are continuous
- If g is continuous at b and $\lim_{x\to c} f(x) = b$, then $\lim_{x\to c} g(f(x)) = g(b)$.
- Intermediate Value Theorem (IVT) for Continuous Functions

Derivative:
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}$$

- The formal definition: Find derivatives & Prove differentiation rules
- Differentiable functions are continuous; The converse might be false.
- Differentiation Rules:

•
$$(c)' = 0$$
, $(x^n)' = nx^{n-1}$, $(a^x)' = (\ln a)a^x \xrightarrow{a=e} (e^x)' = e^x$
• $(c \cdot f)' = c \cdot f'$, $(f \pm g)' = f' \pm g'$
• $(f \cdot g)' = f' \cdot g + f \cdot g'$, $(\frac{f}{g})' = \frac{f' \cdot g - f \cdot g'}{g^2}$

- Second- and Higher-Order Derivatives
- Algebraic = Geometric: f'(a) = Slope *m* of Tangent line at x = a

Formulas for Derivatives

- Constant Rule: (k)' = 0
- **Power Rule:** $(x^n)' = nx^{n-1}$
- Exponential Rule: $(a^x)' = (\ln a) a^x$
- Natural Exponential Rule: $(e^x)' = e^x$
- Logarithmic Rule: $(\log_a x)' = \frac{1}{(\ln a) x}$
- Natural Logarithmic Rule: $(\ln x)' = 1/x$
- Trig. Rule: $(\sin x)' = \cos x$, $(\cos x)' = -\sin x$, $(\tan x)' = \sec^2 x$
- Constant Multiple Rule: $(c \cdot f)' = c \cdot f'$
- Sum/Difference Rule: $(f \pm g)' = f' \pm g'$
- Product Rule: $(f \cdot g)' = f' \cdot g + f \cdot g'$
- Quotient Rule: $\left(\frac{f}{g}\right)' = \frac{f' \cdot g f \cdot g'}{g^2}$
- Chain Rule: $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$
- Derivative Rule for Inverses: $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$
- Implicit/Logarithmic differentiation

Shaoyun Yi

Review for Final

Applications of Derivatives

- Velocity, Acceleration: v(t) = s'(t), a(t) = v'(t) = s''(t); Speed=|v(t)|
- Rates of change and Derivatives in Economics are so-called marginals
- Algebraic = Geometric: f'(a) = Slope m of Tangent line at x = a
 The slope of the normal * The slope of the tangent line = -1
- \bullet Derivatives of the inverse trigonometric functions $\sin^{-1},\cos^{-1},\tan^{-1}$
- Derivatives of positive functions involving products, quotients, powers. It can often be found more quickly by using Logarithmic differentiation:

$$(\ln y)' = \frac{1}{y} \cdot y' \quad \Rightarrow y' = y \cdot (\ln y)'$$

- Related Rates: Review examples in §3.10. (Implicit differentiation:)
- **1.** Differentiate both sides of the equation w.r.t. x, treating y as a function of x.
- **2.** Collect the terms with dy/dx on one side of the equation and solve for dy/dx.

Mean Value Theorem

Suppose that y = f(x) is continuous over [a, b] and differentiable on (a, b). Then there is at least one point $c \in (a, b)$ at which $\frac{f(b) - f(a)}{b - a} = f'(c)$.

Rolle's Theorem is a special case (f(a) = f(b)) of Mean Value Theorem.

- Intermediate Value Theorem & Rolle's Theorem \Rightarrow "exactly one real solution"
- If f'(x) = 0 at each $x \in (a, b)$, then f(x) = C (a constant) for all $x \in (a, b)$.
- If f'(x) = g'(x) at each $x \in (a, b)$, then f(x) = g(x) + C for all $x \in (a, b)$.
- First Derivative Test: f' > 0 means $f \nearrow$ **v.s.** f' < 0 means $f \searrow$
- Second Derivative Test: f'' > 0 means $f \bigcirc$ **v.s.** f'' < 0 means $f \bigcirc$

Global/Local Extrema & Critical/Inflection points

If f'(c) is zero or undefined for an interior point c, then c is a critical point of f.

- Global Maxima/Minima: Compare critical values and endpoints values
- Local Maxima/Minima: Critical points (f'(c) = 0) & f' sign changes Methods: 2nd derivative test (f''(c) ≠ 0); otherwise, 1st derivative test

At a point of inflection (c, f(c)), either f''(c) = 0 or f''(c) fails to exist.

• Inflection points (f changes concavity): f''(c) = 0 & f'' sign changes

Application: Together f' and f'' tell us the shape of the function's graph.

(a, b) Identify the domain of f and any symmetries may have; then find f' and f''

(c) Find critical points and identify function's behavior at each one. [FDT, SDT] Find where the curve is increasing and where it is decreasing. [FDT]

(d) Find the points of inflection, and determine the concavity of the curve. [SDT]

(e) Identify any asymptotes & Plot key points (intercepts, pts in (c), (d))

L'Hôpital's Rule & Applied Optimization

L'Hôpital's Rule for the indeterminate form $0/0, \, \infty/\infty$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Indeterminate Forms $\infty \cdot 0, \infty - \infty$

These forms can be converted to a 0/0 or ∞/∞ form by using algebra.

Indeterminate Forms $1^{\infty}, 0^{0}, \infty^{0}$

(1) take the logarithm; (2) use L'Hôpital's Rule; (3) exponentiate the result

If
$$\lim_{x\to a} \ln f(x) = L$$
, then $\lim_{x\to a} f(x) = \lim_{x\to a} e^{\ln f(x)} = e^{\lim_{x\to a} \ln f(x)} = e^L$.

Solving Applied Optimization Problems (Modeling and Doing math)

Read the problem.
 Draw a picture.
 Introduce variables.
 Write an equation for the unknown quantity.
 Test the critical points and endpoints in the domain of the unknown.

$$\int f(x) dx = F(x) + C, \text{ where } F(x) \text{ is an antiderivative of } f(x).$$

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(c_{k}) \cdot \Delta x = \lim_{n \to \infty} \sum_{k=1}^{n} f(c_{k}) \cdot \left(\frac{b-a}{n}\right)$$
Properties: Order of Integration, Zero Width Interval, Constant Multiple Sum/Difference, Additivity, Min-Max Inequality, Domination
$$\mathbf{FTC}, \mathbf{I} \& \mathbf{II}: \quad F'(x) = \frac{d}{dx} \int_{a}^{x} f(t) dt = f(x); \quad \int_{a}^{b} f(x) dx = F(b) - F(a)$$

$$\bullet \int_{a}^{b} f(x) dx = \begin{cases} \text{area under the curve} & \text{if } f \ge 0 \text{ on } [a, b], \\ - \text{ area below the } x \text{-axis} & \text{if } f < 0 \text{ on } [a, b]. \end{cases}$$

$$\bullet \text{ Average value } (f) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

$$\bullet \int_{-a}^{a} f(x) dx = \begin{cases} 2 \int_{0}^{a} f(x) dx & \text{if } f \text{ is even}, \\ 0 & \text{if } f \text{ is odd.} \end{cases}$$

$$\bullet \text{ Areas Between Curves: } A = \int_{a}^{b} [f(x) - g(x)] dx$$

- Constant Rule: (k)' = 0
- Power Rule: $(x^n)' = n x^{n-1}$
- Exponential Rule: $(a^x)' = (\ln a) a^x$
- Natural Exponential Rule: $(e^x)' = e^x$
- Logarithmic Rule: $(\log_a x)' = \frac{1}{(\ln a) x}$
- Natural Logarithmic Rule: $(\ln x)' = \frac{1}{x}$
- $(\sin x)' = \cos x$, $(\cos x)' = -\sin x$
- $(\tan x)' = \sec^2 x, \ (\cot x)' = -\csc^2 x$
- $(\sec x)' = \sec x \tan x$, $(\csc x)' = -\csc x \cot x$
- Constant Multiple Rule: $(c \cdot f)' = c \cdot f'$
- Sum/Difference Rule: $(f \pm g)' = f' \pm g'$
- Product Rule: $(f \cdot g)' = f' \cdot g + f \cdot g'$
- Quotient Rule: $\left(\frac{f}{g}\right)' = \frac{f' \cdot g f \cdot g'}{g^2}$
- Chain Rule: $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$
- Derivative Rule for Inverses:

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

 $(\arcsin x)', \ (\arccos x)', \ (\arctan x)'$

• Implicit/Logarithmic differentiation

$$\int k \, dx = kx + C$$

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$$

$$\int a^x \, dx = \frac{a^x}{\ln a} + C$$

$$\int e^x \, dx = e^x + C$$

$$\int \int \frac{1}{x} \, dx = \ln |x| + C$$

$$\int \cos x \, dx = \sin x + C, \quad \int \sin x \, dx = -\cos x + C$$

$$\int \sec^2 x \, dx = \tan x + C, \quad \int \csc^2 x \, dx = -\cot x + C$$

$$\int \sec^2 x \, dx = \tan x \, dx = \sec x + C, \quad \int \csc x \cot x \, dx = -\csc x + C$$

$$\int \sec x \tan x \, dx = \sec x + C, \quad \int \csc x \cot x \, dx = -\csc x + C$$

$$\int c \cdot f(x) \, dx = c \cdot \int f(x) \, dx$$

$$\int (f(x) \pm g(x)) \, dx = \int f(x) \, dx \pm \int g(x) \, dx$$

- NA
- NA
- u-substitution: du = u'(x) dx
- NA

Volumes Using Cross-Sections/Cylindrical Shells

- Volumes Using Cross-Sections $V = \int_{a}^{b} A(x) dx$
 - 1. Sketch the solid and a typical cross-section.
 - 2. Find a formula for A(x), the area of a typical cross-section.
 - 3. Find the limits of integration & Integrate A(x) to find the volume.
- Solids of Revolution about the *x*-axis

• Disk Method:
$$V = \int_{a}^{b} A(x) dx = \int_{a}^{b} \pi [R(x)]^{2} dx$$

• Washer Method: $V = \int_{a}^{b} A(x) dx = \int_{a}^{b} \pi ([R(x)]^{2} - [r(x)]^{2}) dx$

• Volumes Using Cylindrical Shells $V = \int_{a}^{b} 2\pi \begin{pmatrix} \text{shell} \\ \text{radius} \end{pmatrix} \begin{pmatrix} \text{shell} \\ \text{height} \end{pmatrix} dx$

Additional Suggestions

Review:

- Your homework
- 2 Your class notes
- Quizzes
- Review Problems with Solutions in Blackboard
- **O** Lecture recordings in Blackboard
- Contact:
 - Me (virtual Office Hours or by e-mail)
 - Your TA
 - Your SI Leader

Good luck with all finals!