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Function: y = f (x)

Domain/Range ! Interval notation

Increasing/Decreasing, Even/Odd ! f (−x) = ±f (x)

Piecewise, Power ( Polys, Rational), Trigonometric, Exponential

Inverse function


one-to-one; Solve y = f (x) for x , then x ↔ y

y = ax ←→ y = loga x

sin(x), cos(x), . . .←→ sin−1(x), cos−1(x), . . .

Composite function (f ◦ g)(x) = f
(
g(x)

)
Shifting/Scaling and Reflecting a graph of a function

Trigonometric Identities and Formulas

Change of Base Formulas for Exponential/Logarithmic function

ax = ex ln a loga x =
ln x

ln a
(a > 0, a 6= 1)
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Limit: lim
x→c

f (x) = L

Limit Laws: f ± g , k · f , f · g , f /g , f n, f 1/n

If P(x) = anx
n + · · ·+ a0, then lim

x→c
P(x) = P(c) = anc

n + · · ·+ a0.

If P(x) and Q(x) are polys and Q(c) 6= 0, then lim
x→c

P(x)

Q(x)
=

P(c)

Q(c)
.

Eliminate common factors from 0 denominators/Multiply by conjugate

The Sandwich Theorem (A fact of Trig.: Range of sin, cos is [−1, 1])

δ − ε language (prove theorems):

for every ε > 0, there exists δ > 0 s.t. 0 < |x − c | < δ ⇒ |f (x)−L| < ε

Find algebraically a δ for a given f , L, c and ε > 0

(1) Solve |f (x)− L| < ε to find an open interval (a, b) containing c.

(2) Find a δ > 0 so that (c − δ, c + δ) centered at c inside (a, b).

lim
x→c

f (x) = L ⇐⇒ lim
x→c+

f (x) = L and lim
x→c−

f (x) = L

lim
x→∞

, lim
x→−∞

: Divide by highest power of x/Multiply by conjugate
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Continuity: lim
x→c

f (x) = f (c)

The function f is continuous at c if lim
x→c

f (x) = f (c).

Four types of discontinuities: removable, jump, infinite, oscillating

Algebraic Combinations: f ± g , k · f , f · g , f /g , f n, f 1/n

Polynomials and Rational functions (if well-defined) are continuous

The inverse function of any continuous function on I is continuous

All composites of continuous functions are continuous

If g is continuous at b and lim
x→c

f (x) = b, then lim
x→c

g
(
f (x)

)
= g(b).

Intermediate Value Theorem (IVT) for continuous functions
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Derivative (R.O.C): f ′(x) = lim
h→0

f (x + h)− f (x)

h
= lim

z→x

f (z)− f (x)

z − x

The formal definition: Find derivatives & Prove differentiation rules

Differentiable functions are continuous; The converse might be false.

Differentiation Rules:

(c)′ = 0, (xn)′ = nxn−1, (ax)′ = (ln a)ax
a=e
99K (ex)′ = ex

(c · f )′ = c · f ′, (f ± g)′ = f ′ ± g ′

(f · g)′ = f ′ · g + f · g ′,
(
f

g

)′
=

f ′ · g − f · g ′

g2

Second- and Higher-Order Derivatives

Algebraic = Geometric: f ′(a) = Slope m of Tangent line at x = a
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Formulas for Derivatives (PDF is in Blackboard)
Constant Rule: (k)′ = 0
Power Rule: (xn)′ = n xn−1

Exponential Rule: (ax)′ = (ln a) ax

Natural Exponential Rule: (ex)′ = ex

Logarithmic Rule: (loga x)′ =
1

(ln a) x
Natural Logarithmic Rule: (ln x)′ = 1/x
Trig. Rule: (sin x)′ = cos x , (cos x)′ = − sin x , (tan x)′ = sec2 x

Constant Multiple Rule: (c · f )′ = c · f ′
Sum/Difference Rule: (f ± g)′ = f ′ ± g ′

Product Rule: (f · g)′ = f ′ · g + f · g ′

Quotient Rule:

(
f

g

)′
=

f ′ · g − f · g ′

g2

Chain Rule:
(
f ◦ g

)′
(x) = f ′

(
g(x)

)
· g ′(x)

Derivative Rule for Inverses: (f −1)′(x) =
1

f ′(f −1(x))
Implicit/Logarithmic differentiation
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Applications of Derivatives

• Velocity, Acceleration: v(t) = s ′(t), a(t) = v ′(t) = s ′′(t); Speed=|v(t)|

• Rates of change and Derivatives in Economics are so-called marginals

? Algebraic = Geometric: f ′(a) = Slope m of Tangent line at x = a

• The slope of the normal ∗ The slope of the tangent line = −1

? Derivatives of the inverse trigonometric functions sin−1, cos−1, tan−1

? Derivatives of positive functions involving products, quotients, powers.

• It can often be found more quickly by using Logarithmic differentiation:

(ln y)′ =
1

y
· y ′ ⇒ y ′ = y · (ln y)′

? Related Rates: Review examples in §3.10. (Implicit differentiation:)

1. Differentiate both sides of the equation w.r.t. x , treating y as a function of x .

2. Collect the terms with dy/dx on one side of the equation and solve for dy/dx .
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Mean Value Theorem & Its applications

Mean Value Theorem

Suppose that y = f (x) is continuous over [a, b] and differentiable on (a, b).

Then there is at least one point c ∈ (a, b) at which
f (b)− f (a)

b − a
= f ′(c).

Rolle’s Theorem is a special case (f (a) = f (b)) of Mean Value Theorem.

• Intermediate Value Theorem & Rolle’s Theorem ⇒ “exactly one real solution”

• If f ′(x) = 0 at each x ∈ (a, b), then f (x) = C (a constant) for all x ∈ (a, b).

• If f ′(x) = g ′(x) at each x ∈ (a, b), then f (x) = g(x) + C for all x ∈ (a, b).

? First Derivative Test: f ′ > 0 means f ↗ v.s. f ′ < 0 means f ↘

? Second Derivative Test: f ′′ > 0 means f v.s. f ′′ < 0 means f
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Global/Local Extrema & Critical/Inflection points

If f ′(c) is zero or undefined for an interior point c , then c is a critical point of f .

• Global Maxima/Minima: Compare critical values and endpoints values

? Local Maxima/Minima: Critical points (f ′(c) = 0) & f ′ sign changes

• Methods: 2nd derivative test (f ′′(c) 6= 0); otherwise, 1st derivative test

At a point of inflection (c , f (c)), either f ′′(c) = 0 or f ′′(c) fails to exist.

? Inflection points (f changes concavity): f ′′(c) = 0 & f ′′ sign changes

Application: Together f ′ and f ′′ tell us the shape of the function’s graph.

(a, b) Identify the domain of f and any symmetries may have; then find f ′ and f ′′

(c) Find critical points and identify function’s behavior at each one. [FDT, SDT]

(c) Find where the curve is increasing and where it is decreasing. [FDT]

(d) Find the points of inflection, and determine the concavity of the curve. [SDT]

(e) Identify any asymptotes & Plot key points (intercepts, pts in (c), (d))
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L’Hôpital’s Rule & Applied Optimization

L’Hôpital’s Rule for the indeterminate form 0/0, ∞/∞

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g ′(x)

Indeterminate Forms ∞ · 0, ∞−∞
These forms can be converted to a 0/0 or ∞/∞ form by using algebra.

Indeterminate Forms 1∞, 00, ∞0

(1) take the logarithm; (2) use L’Hôpital’s Rule; (3) exponentiate the result

If lim
x→a

ln f (x) = L, then lim
x→a

f (x) = lim
x→a

e ln f (x) = e
lim
x→a

ln f (x)
= eL.

Solving Applied Optimization Problems (Modeling and Doing math)

1). Read the problem. 2). Draw a picture. 3). Introduce variables.
4). Write an equation for the unknown quantity.
5). Test the critical points and endpoints in the domain of the unknown.
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Indefinite and Definite Integrals & Applications∫
f (x) dx = F (x) + C , where F (x) is an antiderivative of f (x).∫ b

a
f (x) dx = lim

n→∞

n∑
k=1

f (ck) ·∆x = lim
n→∞

n∑
k=1

f (ck) ·
(b − a

n

)
& Properties

FTC, I & II: F ′(x) =
d

dx

∫ x

a
f (t) dt = f (x);

∫ b

a
f (x) dx = F (b)− F (a)∫ b

a
f (x) dx =

{
− area under the curve if f ≥ 0 on [a, b],

− area below the x-axis if f < 0 on [a, b].

Average value (f ) =
1

b − a

∫ b

a
f (x) dx

Substitution Rule: u = u(x) & du = u′(x) dx∫ a

−a
f (x) dx =

2

∫ a

0
f (x) dx if f is even,

0 if f is odd.

Areas Between Curves: A =

∫ b

a
[f (x)− g(x)] dx
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Volumes Using Cross-Sections/Cylindrical Shells

Volumes Using Cross-Sections V =

∫ b

a
A(x) dx

1. Sketch the solid and a typical cross-section.

2. Find a formula for A(x), the area of a typical cross-section.

3. Find the limits of integration & Integrate A(x) to find the volume.

Solids of Revolution about the x-axis

Disk Method: V =

∫ b

a

A(x) dx =

∫ b

a

π [R(x) ]2 dx

Washer Method: V =

∫ b

a

A(x) dx =

∫ b

a

π
(

[R(x) ]2 − [ r(x) ]2
)
dx

Volumes Using Cylindrical Shells V =

∫ b

a
2π

(
shell

radius

)(
shell

height

)
dx

e.g., y = f (x) is revolved about the vertical line x = L < a < b :

V =

∫ b

a
2π(x − L)f (x) dx
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