
Review for Final

Shaoyun Yi

MATH 122

University of South Carolina

Spring 2021

- Average R.O.C. $\xrightarrow{\Delta t \to 0}$ R.O.C of f(t) at t = a (Derivative f'(a)).
- Accumulated Change $\stackrel{\Delta t \to 0}{\longrightarrow}$ Definite Integral $\int_a^b f(t) dt$ (**F.T.C.**).
- $\bullet \ https://people.math.sc.edu/shaoyun/Review_122F_SYi_Sp_21.pdf$
- Composite Functions ← Chain Rule & Integration by Substitution

Shaoyun Yi Review for Final Spring 2021

2 / 12

Functions

- Ask yourself: What is a function/domain (input)/range (output)?
 - Difference between closed/open intervals, i.e. [,] v.s. (,)
 - Interpret your numerical answers correctly
 - Horizontal intercepts (Zeros) & Vertical intercept (0, f(0))
 - Behavior: increasing/decreasing/constant
 - Concavity: Concave up/down/neither (a line)
 - Linear: y = mx + b & $y y_0 = m(x x_0)$.
 - Exponential: $P = P_0 \cdot a^t \xrightarrow{\text{base change}} P = P_0 \cdot e^{kt}$
 - P_0 : Initial quantity (Vertical intercept)
 - r: Decimal representation of percent rate of change (r = a 1)
 - k : Continuous (growth/decay) rate of change
 - Base Change: $a = e^k \Leftrightarrow \ln a = k$
 - a > 1 (so r > 0 and k > 0): Exponential growth
 - 1 > a > 0 (so r < 0 and k < 0): Exponential decay
 - Natural Log.: $y = \ln x \Leftrightarrow e^y = x \quad (x > 0)$
 - Power (Poly.): $Q(x) = k \cdot x^{p}$ ($P_{n}(x) = c_{n}x^{n} + \cdots + c_{1}x + c_{0}, c_{n} \neq 0$)
 - Composite Functions: f(g(x)). Realize the inside function u = g(x)

Changes

- Changes in $y : \Delta y = y_2 y_1$. Unit: unit of y
- **Q** Average Rate of Change: Unit: unit of y per unit of t

$$\frac{\Delta y}{\Delta t} = \frac{f(b) - f(a)}{b - a} = \text{Slope of Secant line (between } a \text{ and } b)$$

- **Linear:** Its slope *m* is the constant Average Rate of Change.
- $\Delta t \to 0$: (Instantaneous) Rate of Change f'(a) of f at a $\boxed{f'(a) = \text{Slope of Tangent line at } A \text{ (or } x = a) } \cdots (\star)$
 - Estimate f'(a) by taking $\Delta t = 0.001$ in Average Rate of Change
 - Determine f'(a) is < 0 by reading the graph and using (\star)
 - Estimate f'(a) given numerically (Usually, Right-hand approximation)
 - First Derivative Test: f' > 0 means $f \nearrow v.s.$ f' < 0 means $f \searrow v.s.$
- **3** Relative Change in $P: \frac{P_1 P_0}{P_0}$ Unit: %

Applications

- Average Rate of Change: Average Velocity= $\frac{\text{change in distance}}{\text{change in time}}$
- Linear: Cost C(q), Revenue R(q), and Profit $\pi(q)$
 - $C(q) = C_{\text{fixed}} + C_{\text{variable}}$
 - $R(q) = p \cdot q$
 - $\pi(q) = R(q) C(q)$
 - Break-even Point (Zero)
 - Marginal Cost/Revenue/Profit (Slopes ↔ Linear functions)
- Exponential: Know how to use "a = 1 + r" and " e^{k} " properly
 - Exponential growth: has a constant Doubling Time
 - Exponential decay: has a constant Half-Life
 - Compound Interest: $\begin{cases} annually & P(t) = P_0 \cdot (1+r)^t \\ continuously & P(t) = P_0 \cdot e^{rt} \end{cases}$
- Natural Log.: Solve exponential equations using Natural Logarithm
- Power: Define a Polynomial (sum of power functions)
- Composite Functions: Produce New Functions from Old

Shaoyun Yi Review for Final Spring 2021

5 / 12

How to Use Calculator

- Graph a Function:
 - (i) y = : (ii) window: X_{min}/X_{max} (iii) zoom: Choose "ZoomFit"
- Plot a Table of Data:
 - (i) y = : (ii) stat: EDIT & 1: (iii) zoom: Choose "ZoomStat"
- Find a Maximum:
 - (i) y = : (ii) window $: X_{min}/X_{max}$ (iii) zoom : Choose "ZoomFit" (iv) 2nd + trace : Choose "maximum" (v) Left/RightBound?/Guess?
- Evaluate a Value– $Y_1(X)$:
 - (i) y = : (ii) vars: Y-VARS 1: 1: Y_1 (iii) Main Screen: $Y_1(X)$

6 / 12

Formulas for Derivatives (PDF is in Blackboard)

- **①** Constant Rule: (k)' = 0
- **2 Power Rule:** $(x^n)' = nx^{n-1}$
- **3** Exponential Rule: $(a^x)' = (\ln a) a^x$
- **1 Exponential Rule:** $(e^x)' = e^x$
- **5** Exponential Rule: $(e^{kx})' = k e^{kx}$
- **1** Natural Logarithmic Rule: $(\ln x)' = \frac{1}{x}$
- **Onstant Multiple Rule:** $(c \cdot f)' = c \cdot f'$
- **3** Sum Rule: (f+g)' = f' + g'
- **9** Difference Rule: (f g)' = f' g'
- **①** Product Rule: $(f \cdot g)' = f' \cdot g + f \cdot g'$
- **Quotient Rule:** $\left(\frac{f}{g}\right)' = \frac{f' \cdot g f \cdot g'}{g^2}$
- **② Chain Rule:** $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$

(Instantaneous) Rate of Change/Derivative

- 1 Leibniz's Notation: $f'(x) = \frac{dy}{dx}$ and $f'(a) = \frac{dy}{dx}\Big|_{x=a}$
- Interpretations: WWHHmU
- **3** Tangent Line Approximation: $f(x) \approx f(a) + f'(a) \cdot (x a)$
- Relative rate of change of y at a is $\frac{f'(a)}{f(a)}$ and Unit is $\frac{\%}{f(a)}$ per unit of t
- 1st derivative test: f' > 0 means $f \nearrow$ v.s. f' < 0 means $f \nearrow$
- **2nd derivative test**: f'' > 0 means $f \circ v.s.$ f'' < 0 means $f \circ v.s.$
- All derivative rules: C, Power/Exp/NLog, CM, S/D, Prod./Quot., Chain
 Find Equation of tangent line: m = f'(a) & tangent point (a, f(a))
 - Find Second derivative: f'' = (f')'
 - Find Marginal Revenue/Cost/Profit: e.g. MR = R'(q), MC, MP.
 - Find Specific values: Review Examples in §3.3 and §3.4
- **Solution** Local Maxima/Minima: Critical points (f'(p) = 0) & f' sign changes Method: 2nd derivative test $(f''(p) \neq 0)$; otherwise, 1st derivative test
- **Q** Global Maxima/Minima: Compare critical values and endpoints values Application in real life: Find Maximum/Minimum profit $(MP = \pi'(q) = 0)$
- Application in real life: Find Maximum/Minimum profit $(MP = \pi'(q) = 0)$ Inflection points (f changes concavity): f''(p) = 0 & f'' sign changes

Shaoyun Yi Review for Final Spring 2021

Definite Integral

Left-hand sum
$$= f(t_0) \cdot \Delta t + f(t_1) \cdot \Delta t + \cdots f(t_{n-1}) \cdot \Delta t$$

Right-hand sum $= f(t_1) \cdot \Delta t + f(t_2) \cdot \Delta t + \cdots f(t_n) \cdot \Delta t$

$$\Delta t = \frac{b-a}{n}$$

Definite integral
$$\int_a^b f(t) \, dt := \lim_{n \to \infty} \left(\text{Left/Right-hand sum} \right) \quad \text{(i.e., } \Delta t \to 0 \text{)}$$

- Use a calculator: math & choose "9." when you know f.
- Geometric side: If f(t) > 0, then $\int_{a}^{b} f(t) dt = \text{area under graph of } f(t) dt$
 - If f(t) < 0, then $\int_a^b f(t) dt = -$ area between a and b
 - Area between two curves
- Estimate a definite integral numerically/graphically: Left-/Right- sum
- Interpretation: unit for $\int_a^b f(t) dt = \text{product of unit of } f$ and unit of t
- The Fundamental Theorem of Calculus: $\int_a^b F'(x) dx = F(b) F(a)$

e.g. Total cost C(b) of producing b units: $C(b) = C(0) + \int_0^b C'(q) dq$.

Shaoyun Yi Review for Final Spring 2021 9 / 12

Indefinite Integral & Use FTC to evaluate definite integrals

- Antiderivative: If F'(x) = f(x), then F(x) is an antiderivative of f(x). Analyzing antiderivative graphically (FDT, FTC) & numerically (Calculator)
- **2** The Indefinite Integral of f(x): $\int f(x) dx = F(x) + C$
 - The family of antiderivatives of f(x);
 - Formulas for Antiderivatives: f(x) = k; $x^n (n \neq -1)$; $\frac{1}{x}$; e^x ; e^{kx} ; Properties of Antiderivatives: Sums & Constant Multiples
 - Integration by substitution (*u*-substitution): u = u(x), du = u'(x) dx
- **1** Using **FTC** to evaluate Definite Integrals:
 - (i) Find an antiderivative F(x), i.e., Calculate $\int f(x) dx = F(x) + C$
 - (ii) Evaluate the definite integral: $\int_a^b f(x) dx = F(x) \Big|_a^b = F(b) F(a)$
 - (iii) A warm tip: You can use a calculator to double-check your answers!
 - (iv) Applications: Find the area; Evaluate definite integrals by *u*-sub.

Shaoyun Yi Review for Final Spring 2021 10 / 12

i) Constant Rule:
$$(k)' = 0$$

ii) Power Rule:
$$(x^n)' = n x^{n-1}$$

iii) Exponential Rule:
$$(a^x)' = (\ln a) a^x$$

iv) Exponential Rule:
$$(e^x)' = e^x$$

v) Exponential Rule:
$$(e^{kx})' = k e^{kx}$$

vi) Natural Logarithmic Rule:
$$(\ln x)' = \frac{1}{x}$$

vii) Constant Multiple Rule:
$$(c \cdot f)' = c \cdot f'$$

viii) Sum Rule:
$$(f+g)' = f' + g'$$

ix) Difference Rule:
$$(f - g)' = f' - g'$$

x) Product Rule:
$$(f \cdot g)' = f' \cdot g + f \cdot g'$$

xi) Quotient Rule:
$$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$$

xii) Chain Rule:
$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$$

i)
$$\int k \, dx = kx + C$$

ii)
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$$

iii)
$$\int a^x dx = \frac{a^x}{\ln a} + C$$

$$iv) \int e^x dx = e^x + C$$

$$v) \int e^{kx} dx = \frac{e^{kx}}{k} + C$$

$$vi) \int \frac{1}{x} dx = \ln|x| + C$$

vii)
$$\int c \cdot f(x) dx = c \cdot \int f(x) dx$$

viii)
$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$

ix)
$$\int (f(x) - g(x)) dx = \int f(x) dx - \int g(x) dx$$

xii) *u*-substitution:
$$du = u'(x) dx$$

Additional Suggestions

Review:

- Your WileyPlus homework
- Your class notes
- Quizzes
- Tests 1-3 Review Problems with Solutions in Blackboard
- Lecture recordings in Blackboard

Contact:

- Me (virtual Office Hours or by e-mail)
- Your SI Leader

Good luck with all finals!

Shaoyun Yi Review for Final Spring 2021 12 / 12