Instructor: Shaoyun Yi
Time: Monday (10:10-11:50),  Wednesday (8:00-9:40)
Location: Room 206 at Teaching Building
Email: yishaoyun926@xmu.edu.cn
Office: 616
Office Hours: By appointment
  Week No.   |   Topics   |     Homework    |   Due Date (Day)   |
         1   |   Complex numbers and complex planes   |         HW 1   [Pages 14-16: Ex. 5, 8, 13, 15, 17-(3), (5), (7), (9)]    |   3/4 (M)   |
         2   |   Holomorphic functions and the Cauchy-Riemann condition   |         HW 2   [Pages 38-39: Ex. 3-(3), (4), 5, 8, 9, 10]    |   3/11 (M)   |
         3   |   Harmonic functions, Elementary functions and multi-valued functions I   |         HW 3   [Page 169: Ex. 2;   Pages 39-40: Ex. 7, 11, 16-(2), 19]    |   3/18 (M)   |
         4   |   Elementary functions and multi-valued functions II   |         HW 4   [Page 40: Ex. 12, 13, 15, 17, 18]    |   3/25 (M)   |
         5   |   Integral of a complex variable function   |         HW 5   [Pages 58-59: Ex. 1, 3, 5, 7, 9]    |   4/1 (M)   |
         6   |   Cauchy's Theorem and Cauchy's formulas   |         HW 6   [Pages 59-60: Ex. 11-(2), (4), 13, 15, 16, 17]    |   4/8 (M)   |
         7   |   Series of complex numbers   |         HW 7   [Page 87: Ex. 1, 2, 5-(1), (3), (4), (5)]    |   4/15 (M)   |
         8   |   Taylor series   |         HW 8   [Page 88: Ex. 8, 9-(2), (4), (5), 10, 11]    |   4/29 (M)   |
         9   |   Laurent series,   Midterm: 4/24 (W)     | ||
         10   |   Isolated singularities,   No class: 5/1 (W)     |         HW 9   [Pages 88-89: Ex. 12-(1), (2), (3), (5), 13-(1), (3), (4), (5), 15, 16]    |   5/6 (M)   |
         11   |   Holomorphic functions at infinity, Entire functions and meromorphic functions, Residues   |         HW 10   [Page 89: Ex. 14, 21;   Page 109: Ex. 1, 2, 3-(1), (2), 4, 5-(2), (3)]    |   5/13 (M)   |
         12   |   Evaluation of definite integrals I   |         HW 11   [Pages 110-111: Ex. 8-(1), (2), (3), (4), (5), (10), (11), (12), 9]    |   5/20 (M)   |
         13   |   Evaluation of definite integrals II, Argument principle and Rouche's theorem   |         HW 12   [Pages 110-111: Ex. 8-(6), (7), (9), (13), (15), (16), 10, 11, 12]    |   5/27 (M)   |
         14   |   Univalent functions and conformal mappings, Fractional linear transformations   |         HW 13   [Pages 134-135: Ex. 1, 2, 3, 4, 5, 6, 7]    |   6/3 (M)   |
         15   |   The maximum modulus principle and the Riemann mapping theorem   |         HW 14   [Pages 135-136: Ex. 8, 9, 11, 12, 13, 16, 19]    |   6/20 (R)   |
         16   |   No class   | ||
         17   |   Final Exam: 6/20 (R) 10:30-12:30, Room 204 at Teaching Building     |