Organizer: Shaoyun Yi
Email: yishaoyun926@xmu.edu.cn
Office: B515
Tentative Schedule:
  Week No.   |   Date   |   Topics   |   Speaker   |
         1   |   2/19 (W)   |   The metric theory of the pair correlation function for small non-integer powers (Abstract)   |   Lin Feng   |
         2   |   2/25   |   Some interesting combinatorics problems   |   Boyi Zheng   |
         3   |   3/4   |   Some interesting techniques in integral calculus with an application: Proving the transcendence of $e$     An introduction to Zermelo-Fraenkel set theory I   |
  Chenxi Guan     Rui Yan   |
         4   |   3/11   |   An introduction to Zermelo-Fraenkel set theory II: Natural numbers   |   Rui Yan   |
         5   |   3/18   |   An introduction to Zermelo-Fraenkel set theory III: A linear ordering of natural numbers   |   Rui Yan   |
         6   |   3/25   |   An introduction to Zermelo-Fraenkel set theory IV: The (first) recursion theorem   |   Rui Yan   |
         7   |   4/1   |   Banach fixed-point theorem and the norm equivalence theorem in finite-dimensional spaces   |   Junjie Jiang   |
         8   |   4/8   |     |     |
         9   |   4/15   |     |     |
         10   |   4/22   |     |     |
         11   |   4/29   |     |     |
         12   |   5/6   |     |     |
         13   |   5/13   |     |     |
         14   |   5/20   |     |     |
         15   |   5/27   |     |     |
         16   |   6/3   |     |     |
Abstracts
Lin Feng - The metric theory of the pair correlation function for small non-integer powers
The pair correlation is a localized statistic for sequences in the unit interval.
The metric theory of pair correlations of sequences of the form $(\alpha a_n)_{n\ge 1}$ has been pioneered by Rudnick, Sarnak, and Zaharescu in 2001.
Here $\alpha$ is a real parameter and $(a_n)_{n\ge 1}$ is an integer sequence, often of arithmetic origin.
In particular, we study if for almost all $\alpha$, the pair correlation of the sequence $x_n=\langle \alpha n^{\theta}\rangle, n\ge 1$ is Poissonian, i.e.
\[
\lim_{N\to\infty}\frac{1}{N} \#\{1\le n\neq m\le N: |x_n-x_m|\le s/N\}=2s
\]
for all $s\ge 0$.
In 1998, Rudnick and Sarnak proved the corresponding result for integer $\theta>1$.
In 2021, Aistleitner, El-Baz and Munsch obtained some criteria for real valued sequences $(a_n)_{n\ge 1}$, which could solve the case of non-integer $\theta>1$.
In 2022, Rudnick and Technau completed the problem by solving the final case when $\theta\in(0,1)$.
In this talk, we will focus on Rudnick and Technau's result, where they used Dirichlet polyomial to do decoupling.